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A POSSIBILISTIC OPTIMIZATION OVER AN INTEGER EFFICIENT SET
WITHIN A FUZZY ENVIRONMENT

Assia Menni∗ and Djamal Chaabane

Abstract. Optimizing a linear function over the efficient set of a Multiple Objective Integer Linear
Programming (MOILP) problem is known as a difficult problem to deal with, since a discrete efficient
set is generally not convex and not explicitly known. Such problem becomes more and more difficult
when parameters are defined with uncertainty. In this work, we deal with problems of this type for
which parameters are imprecise and are assumed to be trapezoidal fuzzy numbers. The method is based
on possibility and necessity measures introduced in the literature by D. Dubois and H. Prade.

Mathematics Subject Classification. MSC 90C29, MSC 03E72, MSC 90C70.

Received October 24, 2018. Accepted August 14, 2019.

1. Introduction

Multiple Objective Optimization problems are often encountered in real world problems modeling. The pa-
rameters involved can be uncertain and make the situation complicated. As far as we know, there is no specific
method that solves this kind of problems without switching to a deterministic mono-objective models. This
doesn’t mean eliminating uncertainty but, on the contrary, trying to preserve it all along the resolution process.
By uncertainty we mean “randomness” and/or “fuzziness”.

Fuzzy sets theory was born in 1965 [29], when L.A. Zadeh defined a fuzzy set as “a class” of objects with
a continuum of grades membership and characterized it by a membership function, instead of classical charac-
teristic function. As for fuzzy mathematical programming, Bellman and Zadeh [2], Tanaka et al. [25, 26] and
Zimmermann [30] were the first to develop it. Zimmermann [31], suggest converting The Fuzzy MOLP problem
into a single objective optimization problem (Max–Min problem) by using Bellman and Zadeh’s fuzzy decision
model (in [2]). In this approach, both of decision goals and the decision constraints should be satisfied, then the
joint decision is to be optimized. Sakawa et al. [21], propose an interactive method for a Fuzzy MOLP prob-
lem with fuzzy goals of the DM and define the concept of M -Pareto optimal solution in terms of membership
functions instead of objective functions. The DM has then to specify a reference membership value for each
fuzzy objective function and a M -Pareto optimal solution is obtained by minimizing the difference between
membership functions and their reference membership levels using L∞ norm. This approach is interactive in
the sense that the reference levels can be changed from one iteration to another, as well as the membership
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functions of fuzzy goals. Subsequently, some extensions of these two approaches have been proposed in the
literature. Both approaches are investigated on two phases: the fuzzy model is first converted to a deterministic
one, then an optimization technique is applied to solve it. Inuiguchi and Sakawa [15] investigated an approach
on a third phase in which they examine the efficiency of the obtained solution and they define two kinds of
efficient solutions: possibly and necessarily efficient solutions.

In some situations, if the DM would prefer an efficient solution that optimizes a particular function of
decision variables, we are therefore faced to an optimization problem over an efficient set of an MOLP problem
(see e.g. [4, 5, 12, 14, 16, 19, 28]). With integer decision variables, the set of feasible solutions is no more convex.
This frame of research includes few methods for which branch and bound techniques or/and Branch and cut
algorithms are imposed [1, 7, 8, 17]. As for such a problem with stochastic parameters, an exact method has
been developed in [6]. In this paper, we investigate the problem of optimizing a linear function over an efficient
set of a Multiple Objective Integer Linear Programming (MOILP) problem within a fuzzy environment using
possibility and necessity measures. This study can be motivated by some situations in real life problems. As an
example, consider a production scheduling problem in which five different types of products are manufactured
by an industrial firm: The fabrication process requires that each product pass through four workshops and
the man-hours in each cannot be stated precisely but are described in a fuzzy way: in the ith workshop, the
man-hour spent in manufacturing type j is a fuzzy interval ãij (i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3, 4, 5}). The overall
man-hours in the ith workshop must not exceed a certain duration in a fuzzy time interval b̃i.

The unit profits and costs of these five products are also described as fuzzy numbers {c̃11, c̃12, c̃13, c̃14, c̃15}
and {c̃21, c̃22, c̃23, c̃24, c̃25} respectively, because they cannot be stated precisely in nature.

Let x ∈ N5 be a decision vector whose the jth component represents the number of the produced units of type
j. The profit and cost resulting from a production plan x are respectively given by f1(x) = c̃1x and f2(x) = c̃2x.

The firm knows that manufacturing the five products produces toxic waste whose quantity can be estimated
as fuzzy intervals (d̃1, . . . , d̃5) and wants to find a minimum-pollution production plan. However, the firm also
seeks to maintain a high-level compromise between overall manufacturing cost and profit. In this case, a problem
of type (2.3)(see Sect. 2) would be quite useful: Instead of minimizing d̃x over the feasible set X, the firm would
minimize d̃x over the set of efficient solutions of a problem of type (2.4).

The next section contains some important results in fuzzy theory. In Section 3, we first state about a well
known possibilistic technique that allows to transform fuzzy constraints of the fuzzy MOILP problem into
deterministic ones using possibility and necessity measures, then we suggest a possibilistic way to overcome
the fuzzy aspect of the main objective in the considered problem. In Section 4, we define fuzzy dominance and
fuzzy efficiency with respect to possibility and necessity measures. An efficiency test in this sense is developed
in the same section. In Section 5 we present a solving algorithm. An illustrative example is given in Section 6.
Numerical results are given in Section 7 and the paper is concluded in Section 8.

2. Notations and main results

In ordinary sets theory, an element x ∈ X is either in a given set A ⊂ X or not. In fuzzy sets theory,
the concept of membership of a fuzzy subset Ã is generalized: x belongs to Ã with a degree of membership
µÃ(x) ∈ [0, 1], where the extreme values µÃ(x) = 0 and µÃ(x) = 1 correspond to nonmembership and full
membership respectively. Hence, the support of Ã is defined as the ordinary subset for which the membership
degrees of elements are positive while its kernel is defined as the ordinary subset for which the membership
degree of elements is the largest one. An α-cut of Ã, denoted by Ãα, is defined as the ordinary subset of Ã for
which the membership degrees of elements are greater than or equal to α (α ∈ [0, 1]). The height of a fuzzy set
Ã is equal to the largest value of membership degrees of its elements. If the height of Ã is 1 then Ã is said to
be normal. A fuzzy set Ã for which µÃ(λx1 + (1 − λ)x2) ≥ min{µÃ(x1), µÃ(x2)} for all x1 and x2 in Ã and
λ ∈ [0, 1], is said to be convex. A fuzzy number is a fuzzy subset of real numbers which is normal and convex
(see e.g. [10, 20,22]).
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2.1. The problem

A classical problem of optimizing a linear function φ over the efficient set of a MOILP problem is generally
formulated as follows:

(PE) : max{φ(x) = dTx |x ∈ E(P )} (2.1)

where E(P ) denotes the set of efficient solutions of a MOILP problem (P ) defined in general by

(P )
{

“max” fk(x) = ckx ; k = 1, . . . , p
x ∈ X = {s ∈ Zn |As ≤ b , s ≥ 0} . (2.2)

A is a (m× n) matrix, b is a m-dimensionnal vector and ck is the kth row-vector of a (p× n) matrix C. In this
paper we deal with the following optimization problem:

(P̃E) : max{φ̃(x) = d̃x |x ∈ E(P̃ )} (2.3)

where

(P̃ )
{

“max” f̃k(x) = c̃kx ; k = 1, . . . , p
x ∈ X̃ = {s ∈ Zn | Ãs ≤ b̃ , s ≥ 0} . (2.4)

Elements ãij , b̃i, c̃kj and d̃j of Ã, b̃, C̃ and d̃ respectively are fuzzy numbers with membership functions µãij ,
µb̃i , µc̃kj and µd̃j respectively (i = 1, . . . ,m, j = 1, . . . , n and k = 1, . . . , p).

We consider here the situation in which all parameters of (P̃ ) and (P̃E) are trapezoidal fuzzy numbers. If Ñ
is one of these coefficients, its membership function is then defined as [13,32]:

µÑ (x) =


0 if x ≤ nL − σLN or x ≥ nR + σRN
1− nL−x

σLN
if nL − σLN ≤ x ≤ nL

1− x−nR
σRN

if nR ≤ x ≤ nR + σRN
1 if nL ≤ x ≤ nR

(2.5)

such that

µÑ (nL − σLN ) =
{

1 if σLN = 0
0 if σLN > 0 and µÑ (nR + σRN ) =

{
1 if σRN = 0
0 if σRN > 0

where nL and nR are respectively the lower and upper modal values of Ñ (see Fig. 1). σLN and σRN are real
nonnegative values that represent Left and Right spreads of Ñ respectively. Ñ is symbolically denoted by

Ñ = (nL, nR, σLN , σ
R
N ).

3. Possibility-based defuzzification of the problem

To compare two LR-flat fuzzy numbers M̃ and Ñ , Dubois and Prade [10, 11] give an index quantifying the
possibility that M̃ is greater than or equal to Ñ :

Π(M̃ ≥ Ñ) = sup
m≥n

min{µM̃ (m), µÑ (n)}. (3.1)

As mentioned in [22] and [13], Figure 1 shows us that if the kernel of M̃ is located to the left of the kernel of
Ñ then M̃ is less than or equal to Ñ with a possibility value equal to 1, but the possibility that M̃ is greater
than or equal to Ñ is equal to the Height h0 of the intersection of M̃ with Ñ :

Π(M̃ ≥ Ñ) = H(M̃ ∩ Ñ) = h0.
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Figure 1. Inequality between two fuzzy numbers with respect to possibility measure.

Hence, if ker(M̃) ∩ ker(Ñ) 6= ∅ then Π(Ñ ≥ M̃) = Π(M̃ ≥ Ñ) = 1.
Seen from this point of view, the possibility function measuring the possibility that M̃ is greater than or

equal to another trapezoidal fuzzy number Ñ , is defined as:

Π(M̃ ≥ Ñ) =


1 if nL −mR ≤ 0
1− nL−mR

σRM+σLN
if 0 ≤ nL −mR ≤ σRM + σLN

0 if nL −mR ≥ σRM + σLN

. (3.2)

In the particular case where σRM = σLN = 0, we have Π(M̃ ≥ Ñ) =
{

1 if nL ≤ mR

0 if nL > mR .

Given a fixed level α, we have

Π(M̃ ≥ Ñ) ≥ α⇔ 1− nL −mR

σRM + σLN
≥ α (3.3)

⇔ nL − (1− α)σLN ≤ mR + (1− α)σRM . (3.4)

Now, as all fuzzy parameters of (P̃ ) are here assumed to be trapezoidal and by using the binary relation (3.4),
the possibility that the ith constraint is satisfied is greater than or equal to α if and only if the following
deterministic inequality is satisfied:

n∑
j=1

(
aLij − (1− α)σLaij

)
xj ≤ bRi + (1− α)σRbi (3.5)

where ãij = (aLij , a
R
ij , σ

L
aij , σ

R
aij ) and b̃i = (bLi , b

R
i , σ

L
bi
, σRbi) (i = 1, . . . ,m ; j = 1, . . . , n).

Let χα be the following set:

χα = {x ∈ Rn |
n∑
j=1

(
aLij − (1− α)σLaij

)
xj ≤ bRi + (1− α)σRbi , ∀i = 1, . . . ,m}. (3.6)

A solution x ∈ χα is admissible for (P̃ ) with a degree of possibility greater than or equal to α.
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Figure 2. Strict inequality between two fuzzy numbers with respect to possibility measure.

Figure 3. Inequality between two fuzzy numbers with respect to necessity measure.

In [11] authors give also an index quantifying the possibility that M̃ is strictly greater than Ñ (Fig. 2):

Π(M̃ > Ñ) = sup
m

inf
n≥m

min {µM̃ (m), 1− µÑ (n)} (3.7)

Π(M̃ > Ñ) = h1 =


0 if mR + σRM ≤ nR
mR+σRM−n

R

σRM+σRN
if nR ≤ mR + σRM ≤ nR + σRM + σRN

1 if mR ≥ nR + σRN

. (3.8)

In the particular case where σRM = σRN = 0, we have: Π(M̃ > Ñ) =
{

0 if mR ≤ nR
1 if mR > nR

.

Always in the same context of comparing two fuzzy numbers, Dubois and Prade introduced also an index
quantifying the necessity that a fuzzy number M̃ is greater than or equal to another fuzzy number Ñ :

N (M̃ ≥ Ñ) = inf
m

sup
m≥n

max {1− µM̃ (m), µÑ (n)} . (3.9)

A translation of equation (3.9) is given in Figure 3.

N (M̃ ≥ Ñ) = q0 =


0 if mL ≤ nL − σLN
mL−nL+σLN
σLM+σLN

if nL − σLN ≤ mL ≤ nL + σLM
1 if mL − σLM ≥ nL

. (3.10)

In the particular case where σLM = σLN = 0, we have: N (M̃ ≥ Ñ) =
{

0 if mL < nL

1 if mL ≥ nL .

For a fixed level α, we have:

N (M̃ ≥ Ñ) ≥ α⇔ nL − (1− α)σLN ≤ mL − ασLM (3.11)
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Figure 4. Strict inequality between two fuzzy numbers with respect to necessity measure.

and it can easily be proved that
N (M̃ ≥ Ñ) ≥ α⇒ Π(M̃ ≥ Ñ) ≥ α. (3.12)

As for the ith fuzzy constraint of problem (P̃ ), the necessity that it is satisfied is greater than or equal to α
if and only if the following crisp constraint is satisfied:

n∑
j=1

(
aLij − (1− α)σLaij

)
xj ≤ bLi − ασLbi , i ∈ {1, . . . ,m}. (3.13)

Now, let ψα be the following set:

ψα =

x ∈ Rn |
n∑
j=1

(
aLij − (1− α)σLaij

)
xj ≤ bLi − ασLbi , ∀i = 1, . . . ,m

 . (3.14)

A solution x ∈ ψα is admissible for (P̃ ) with a degree of necessity greater than or equal to α. From prop-
erty 3.12, it’s clear that ψα ⊆ χα.

Also, the necessity that a fuzzy number M̃ is greater than another fuzzy number Ñ [11] is defined as (see
Fig. 4):

N (M̃ > Ñ) = inf
n≥m

max{1− µM̃ (m), 1− µÑ (n)}

= 1− sup
n≥m

min{µM̃ (m), µÑ (n)}

= 1−Π(Ñ ≥ M̃).

Now, as the coefficients d̃1, d̃2, . . . , d̃n are assumed to be trapezoidal fuzzy numbers, the main objective
function φ̃ is also trapezoidal (see for instance [9]):

φ̃(x) =
(
φL(x), φR(x), σLφ(x), σ

R
φ(x)

)
(3.15)

=

 n∑
j=1

dLj xj ,

n∑
j=1

dRj xj ,

n∑
j=1

σLdjxj ,

n∑
j=1

σRdjxj

 . (3.16)

In a possibilistic context, maximizing φ̃ over E(P̃ ) consists on finding x? ∈ E(P̃ ) such that Π
(
φ̃(x?) ≥ φ̃(x)

)
is maximal for all x ∈ E(P̃ ). But it’s well known that, given two LR-flat fuzzy numbers M̃ and Ñ , we have
max{Π(M̃ ≥ Ñ) , Π(Ñ ≥ M̃)} = 1. So, maximizing φ̃ over E(P̃ ) consists on finding x? ∈ E(P̃ ) such that
Π
(
φ̃(x?) ≥ φ̃(x)

)
= 1 for all x ∈ E(P̃ ). In other words, if there doesn’t exist another efficient solution ȳ ∈ E(P̃ )

for which Π
(
φ̃(x?) ≥ φ̃(ȳ)

)
< 1 then x? is seen as a satisfactory solution for the decision-maker.
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Figure 5. Π
(
φ̃(x?) ≥ φ̃(y)

)
is less than 1.

Definition 3.1. A solution x? ∈ E(P̃ ) is said to be satisfactory for problem (P̃E) if Π
(
φ̃(x?) ≥ φ̃(x)

)
= 1 for

all x ∈ E(P̃ ).

For the sake of simplicity, let’s denote φ̃(x?) by G̃ = (gL, gR, σLg , σ
R
g ). Then we have gL = φL(x?), gR =

φR(x?), σLg = σLφ(x?) and σRg = σRφ(x?)

As shown above (see Fig. 1 with G̃ and φ̃(x) instead of M̃ and Ñ respectively), Π
(
G̃ ≥ φ̃(x)

)
= 1 if the

kernel of G̃ is located to the right of the kernel of φ̃(x) or if the intersection of the two kernels is not empty (i.e.
if gR ≥ φL(x)). As φR(x) ≥ φL(x), it can be affirmed that

gR ≥ φR(x) , ∀x ∈ E(P̃ )⇒ Π
(
G̃ ≥ φ̃(x)

)
= 1 , ∀x ∈ E(P̃ )

based upon, we suggest the following deterministic formulation of (P̃E):

(PE)

max φR(x) =
n∑
j=1

dRj xj

x ∈ E(P̃ )

.

Lemma 3.2. An optimal solution x? of (PE) is satisfactory for (P̃E). (see formula (2.3))

Proof. Suppose x? not being satisfactory for (P̃E). Then there exists y ∈ E(P̃ ) such that Π
(
φ̃(x?) ≥ φ̃(y)

)
< 1.

But the inequality φ̃(x?) ≥ φ̃(y) is not fully possible if and only if the upper bound of the kernel of φ̃(x?) is less
than the lower bound of the kernel of φ̃(y) (see Fig. 5):

Π
(
φ̃(x?) ≥ φ̃(y)

)
< 1⇔

n∑
j=1

dRj x
?
j <

n∑
j=1

dLj yj .

Note here that
∑n
j=1 d

R
j x

?
j = φR(x?) and

∑n
j=1 d

L
j yj = φL(y) (formulas (3.15) and (3.16)). This implies that∑n

j=1 d
R
j x

?
j <

∑n
j=1 d

R
j yj , since

∑n
j=1 d

L
j yj ≤

∑n
j=1 d

R
j yj (by the very construction of flat–fuzzy numbers). The

last strict inequality contradicts x? being an optimal solution of (PE). �
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4. Efficiency seen from a Possibilistic viewpoint

Definition 4.1 (Efficiency). [3, 23, 27] An admissible solution x? of (P ) is said to be efficient if and only if
there doesn’t exist another admissible solution y of (P ) such that fk(y) ≥ fk(x?) for all k ∈ {1, . . . , p} and
fj(y) > fj(x?) for at least one j ∈ {1, . . . , p}.

Let’s denote by Γ̃ the fuzzy feasible set of (P̃ ) in objective space:

Γ̃ = {z̃ = C̃x |x ∈ Dα}

where Dα is a defuzzified admissible set of (P̃ ). It is either χα or ψα (see formulas (3.6) and (3.14)).
In a possibilistic context, we suggest the following definitions:

Definition 4.2 (π-dominance). A feasible fuzzy solution z̃ ∈ Γ̃ of (P̃ ) is said to be π-dominated (i.e. possibly
dominated) if and only if there exists another feasible fuzzy solution z̃′ ∈ Γ̃ such that at least one of the following
statements holds:

(a) ∀k ∈ {1, . . . , p}, Π (z̃k > z̃′k) = 0 and ∃l ∈ {1, . . . , p} |Π (z̃′l > z̃l) > 0.
(b) ∀k ∈ {1, . . . , p}, N (z̃′k ≥ z̃k) = 1 and ∃l ∈ {1, . . . , p} |N (z̃l ≥ z̃′l) < 1.

Let x be an admissible solution of (P̃ ) such that z̃ = C̃x. Formally, z̃ is π-dominated if and only if there
exists y ∈ Dα such that at least one of the following holds:

(1).
∑n
j=1 c

R
kjyj ≥

∑n
j=1(cRkj +σRckj )xj , ∀k ∈ {1, . . . , p} and

∑n
j=1(cRlj +σRclj )yj >

∑n
j=1 c

R
ljxj for at least one l.

(2).
∑n
j=1(cLkj −σLckj )yj ≥

∑n
j=1 c

L
kjxj , ∀k ∈ {1, . . . , p} and

∑n
j=1 c

L
ljyj >

∑n
j=1(cLlj −σLclj )xj for at least one l.

Definition 4.3 (N -dominance). A feasible fuzzy solution z̃ ∈ Γ̃ of (P̃ ) is said to be N -dominated (i.e. neces-
sarily dominated) if and only if there exists w̃ ∈ Γ̃ such that (a) holds and there exists ỹ ∈ Γ̃ such that (b) holds
(when replacing z̃′ by w̃ and ỹ in (a) and (b) respectively).

Definition 4.4. A feasible fuzzy solution z̃ ∈ Γ̃ of (P̃ ) is said to be N -dominated by another feasible fuzzy
solution z̃′ ∈ Γ̃ if and only if (a) and (b) hold simultaneously.

Definition 4.5 (π-efficiency). An admissible solution x? ∈ Dα is said to be π-efficient (i.e. possibly efficient)
for (P̃ ) if and only if C̃x? is not N -dominated.

Definition 4.6 (N -efficiency). An admissible solution x? ∈ Dα is said to be N -efficient (i.e. necessarily effi-
cient) for (P̃ ) if and only if C̃x? is not π-dominated.

Let’s denote by Eπ(P̃ ) and EN (P̃ ) the sets of π-efficient solutions and N -efficient solutions of (P̃ ) respectively
and let’s denote by ∆π(P̃ ) and ∆N (P̃ ) the sets of π-dominated solutions and N -dominated solutions of (P̃ )
respectively. The following property is obvious.

Property 4.7. We have EN (P̃ ) ⊆ Eπ(P̃ ) and ∆N (P̃ ) ⊆ ∆π(P̃ ).

Now, let x̂ be a given admissible solution of (P̃ ). According to Definitions 4.2 and 4.3, the following two
Linear Programs are formulated in order to examine π-efficiency and/or N -efficiency of x̂:

(TL{x̂})






max ΘL =

p∑

k=1

θLk

n∑

j=1

cLkjxj − θLk =

n∑

j=1

(cLkj − σLckj )x̂j , ∀k = 1, p

n∑

j=1

(cLkj − σLckj )xj ≥
n∑

j=1

cLkj x̂j , ∀k = 1, p

x ∈ Dα, θLk ≥ 0, ∀k ∈ {1, . . . , p}

; (TR{x̂})






max ΘR =

p∑

k=1

θRk

n∑

j=1

(cRkj + σRckj )xj − θ
R
k =

n∑

j=1

cRkj x̂j , ∀k = 1, p

n∑

j=1

cRkjxj ≥
n∑

j=1

(cRkj + σRckj )x̂j , ∀k = 1, p

x ∈ Dα, θRk ≥ 0, ∀k ∈ {1, . . . , p}
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where c̃kj = (cLkj , c
R
kj , σ

L
ckj , σ

R
ckj ) (k = 1, . . . , p ; j = 1, . . . , n) are the fuzzy objective coefficients.

By solving (TL{x̂}), we look for an admissible solution y that satisfies condition (2) of Definition 4.2. Such a solution

doesn’t exist if and only if the large inequality doesn’t hold for at least one k ∈ {1, 2, . . . , p} (i.e. (TL{x̂}) is unfeasible) or

the strict inequality doesn’t hold for all l ∈ {1, 2, . . . , p} (i.e. (TL{x̂}) is unfeasible or its optimal objective value is zero).

Similarly, by solving (TR{x̂}), we look for an admissible solution that satisfies condition (1).
From Definitions 4.5 and 4.6, we obtain the following propositions:

Proposition 4.8. An admissible solution x̂ ∈ Dα is π-efficient for (P̃ ) if and only if at least one of (TL{x̂}) or (TR{x̂}) is
unfeasible or its optimal objective value is zero.

Proof. Suppose that both (TL{x̂}) and (TR{x̂}) are feasible and let Θ̂L and Θ̂R be their optimal objective values respectively.
It follows that:

Θ̂L > 0 and Θ̂R > 0⇔ there exists y ∈ Dα such that

n∑

j=1

cRkjyj ≥
n∑

j=1

(cRkj + σRckj )x̂j , ∀k ∈ {1, . . . , p}

n∑

j=1

(cRlj + σRclj )yj >

n∑

j=1

cRlj x̂j for at least one l

and there exists y′ ∈ Dα such that

n∑

j=1

(cLkj − σLckj )y
′
j ≥

n∑

j=1

cLkj x̂j , ∀k ∈ {1, . . . , p}

n∑

j=1

cLqjy
′
j >

n∑

j=1

(cLqj − σLcqj )xj for at least one q

⇔ C̃x̂ is N -dominated

⇔ x̂ is not π-efficient.

Hence, x̂ is π-efficient if and only if Θ̂L = 0 or Θ̂R = 0 or (TL{x̂}) is unfeasible or (TR{x̂}) is unfeasible. �

Proposition 4.9. A solution x̂ ∈ Dα is N -efficient for (P̃ ) if and only if each of the two Linear Programs (TL{x̂}) and

(TR{x̂}) is unfeasible or its optimal objective value is zero.

Proof.

x̂ is N -efficient⇔ x̂ is not π-dominated

⇔ @y ∈ Dα such that
n∑

j=1

(cLkj − σLckj )yj ≥
n∑

j=1

cLkj x̂j , ∀k = 1, . . . , p and ∃l ∈ {1, . . . , p} |
n∑

j=1

cLljyj >
n∑

j=1

(cLlj − σLclj )x̂j

and @y′ ∈ Dα such that

n∑

j=1

cRkjy
′
j ≥

n∑

j=1

(cRkj + σRckj )x̂j , ∀k = 1, . . . , p and ∃l ∈ {1, . . . , p} |
n∑

j=1

(cRlj + σRclj )y
′
j >

n∑

j=1

cRlj x̂j

⇔ {(TL{x̂}) is unfeasible or Θ̂L = 0} and {(TR{x̂}) is unfeasible or Θ̂R = 0}.

�

We can summarize the decision rule for the nature of x̂ in Table 1.

Proposition 4.10. If (TL{x̂}) has an optimal solution (ŝ , Θ̂L), such that Θ̂L > 0, then ŝ is π-efficient.
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Table 1. Decision rule for the nature of x̂.

(TL{x̂}) is unfeasible (TL{x̂}) has a null optimal ob-
jective value

(TL{x̂}) has a positive optimal
objective value

(TR{x̂}) is unfeasible x̂ is N -efficient x̂ is N -efficient x̂ is π-efficient

(TR{x̂}) has a null
optimal objective
value

x̂ is N -efficient x̂ is N -efficient x̂ is π-efficient

(TR{x̂}) has a
positive optimal
objective value

x̂ is π-efficient x̂ is π-efficient x̂ is neither N -efficient nor
π-efficient

Proof. Suppose that ŝ is not π-efficient. Then C̃ŝ is N -dominated. Therefore, there exists y ∈ Dα and there exists
y′ ∈ Dα such that:

(1)
∑n
j=1(cLkj − σLckj )yj ≥

∑n
j=1 c

L
kj ŝj , ∀k = 1, . . . , p.

(2)
∑n
j=1 c

R
kjy
′
j ≥

∑n
j=1(cRkj + σRckj )ŝj , ∀k = 1, . . . , p.

(3)
∑n
j=1 c

L
ljyj >

∑n
j=1(cLlj − σLclj )ŝj for at least one index l ∈ {1, . . . , p}.

(4)
∑n
j=1(cRlj + σRclj )y

′
j >

∑n
j=1 c

R
lj ŝj for at least one index l ∈ {1, . . . , p}.

From inequality (1) we deduce that
∑n
j=1(cLkj − σLckj )yj ≥

∑n
j=1 c

L
kj x̂j ∀k = 1, . . . , p, since we have

n∑

j=1

cLkj ŝj ≥
n∑

j=1

(
cLkj − σLckj

)
ŝj ≥

n∑

j=1

cLkj x̂j , ∀k = 1, . . . , p.

Inequality (3) (joined to inequality (1)) indicates that
∑n
j=1 c

L
kjyj ≥

∑n
j=1 c

L
kj ŝj for all k ∈ {1, . . . , p}, with at least

one strict inequality.
This implies that

∑n
j=1 c

L
kjyj −

∑n
j=1(cLkj − σLckj )x̂j ≥

∑n
j=1 c

L
kj ŝj −

∑n
j=1(cLkj − σLckj )x̂j = θ̂Lk for all k ∈ {1, . . . , p},

with at least one strict inequality.

Now, by summing over k we get
∑p
k=1

∑n
j=1

(
cLkjyj − (cLkj − σRckj )x̂j

)
>
∑p
k=1 θ̂

L
k = Θ̂L.

The last strict inequality contradicts (ŝ , Θ̂L) being optimal for (TL{x̂}). Thus, ŝ is π-efficient. �

Proposition 4.11. If (TR{x̂}) has an optimal solution (ŵ , Θ̂R), such that Θ̂R > 0, then ŵ is π-efficient.

Proof. By using inequalities (2) and (4) the proof is similar to that of Proposition 4.10. �

Proposition 4.12. If the resolution of (TL{x̂}) and (TR{x̂}) provides a same optimal solution Ŝ with positive optimal

objective values, then Ŝ is N -efficient.

Proof. Let’s consider again the inequalities (1)–(4) that are involved in the proof of Proposition 4.10. We have shown
that (1) and (3) imply that ŝ is not optimal for (TL{x̂}) and in the same manner, we can show that (2) and (4) imply that

ŵ is not optimal for (TR{x̂}). By replacing ŝ and ŵ by Ŝ which is assumed to be optimal for both of (TL{x̂}) and (TR{x̂}),
we have:

Ŝ is not N -efficient⇔ Ŝ is π-dominated

⇔ “∃y ∈ Dα such that (1) and (3) hold” OR “∃y ∈ Dα such that (2) and (4) hold”

⇒ Ŝ is not optimal for (TL{x̂}) OR Ŝ is not optimal for (TR{x̂})

which leads to a contradiction. �
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5. An algorithm for optimizing φ̃ over E(P̃ )

In the algorithm of finding an optimal solution to problem (PE) which is proposed in [7], the admissible set of problem
(P ) is reduced iteratively by successive elimination of subsets of dominated solutions, until the test of efficiency of the
current solution is positive. Sylva and Crema’s cuts (see [24]) which are used in this elimination process are extended
here to be used in a possibilistic framework to solve problem (P̃E).

5.1. Detailed description of the algorithm

In this section we give a detailed description of the proposed algorithm. If we are interested in optimizing φ̃ over the
set of π-efficient solutions of (P̃ ) (i.e. E(P̃ ) = Eπ(P̃ )), then at each iteration of the searching process we use cuts which
only keep a subset of admissible solutions not N -dominating with the current one. If instead we are interested in finding
a satisfactory solution of φ̃ over the set of N -efficient solutions of (P̃ ) (i.e. E(P̃ ) = EN (P̃ )), then at each iteration, we
use cuts which only keep a subset of admissible solutions which do not π-dominate with the current one.

5.1.1. Case where E(P̃ ) = Eπ(P̃ )

At a given iteration t where a π-efficient solution ŝt is detected, we reduce Dα as follows:

Dt =






x ∈ Dt−1

∣∣∣∣∣∣∣∣∣∣∣

Π
(
f̃k(x) > λkf̃k(ŝt) + (1− λk)L̃0

k

)
> 0 , ∀k = 1, . . . , p

N
(
γkf̃k(ŝt) + (1− γk)L̃1

k ≥ f̃k(x)
)
< 1 , ∀k = 1, . . . , p

p∑

k=1

λk + γk ≥ 1






where, D0 = Dα and λk, γk ∈ {0, 1} ∀k = 1, . . . , p

L̃0
k is a trapezoidal fuzzy number for which L0R

k + σRL0
k

= L0
k = minx∈Dα{

∑n
j=1(cRkj + σRLk )xj} ; k = 1, . . . , p.

L̃1
k is a trapezoidal fuzzy number for which L1L

k = L1
k = minx∈Dα{

∑n
j=1 c

L
kjxj} ; k = 1, . . . , p.

Thus, Dt is defined as:

Dt =






x ∈ Dt−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

(cRkj + σRckj )xj ≥ λk(

n∑

j=1

cRkj ŝ
t
j + ε) + (1− λk)L0

k ∀k = 1, . . . , p

n∑

j=1

cLkjxj ≥ γk

(
n∑

j=1

(cLkj − σLckj )ŝ
t
j + ε

)

+ (1− γk)L1
k , ∀k = 1, . . . , p,

p∑

k=1

λk + γk ≥ 1, λk, γk ∈ {0, 1}






where ε is a positive real number chosen to be small enough.
If λk = 1, the constraint

∑n
j=1(cRkj + σRckj )xj >

∑n
j=1 c

R
kj ŝ

t
j implies that C̃ŝt doesn’t N -dominate C̃x. So C̃x is either

N -dominated by another solutions or x is π-efficient.
If λk = 0, the constraint

∑n
j=1(cRkj + σRckj )xj ≥ L0

k is always satisfied.

If γk = 1, the constraint
∑n
j=1 c

L
kjxj >

∑n
j=1(cLkj − σLckj )ŝ

t
j implies that C̃ŝt doesn’t N -dominate C̃x. So C̃x is either

N -dominated by another solutions or x is π-efficient.
If γk = 0, the constraint

∑n
j=1 c

L
kjxj ≥ L1

k is always satisfied.

The constraint
∑p
k=1 λk + γk ≥ 1 means that at least one index l ∈ {1, . . . , p} verifies λl = 1 or γl = 1. i.e. at least

one necessarily dominance constraint is violated.

5.1.2. Case where E(P̃ ) = EN (P̃ )

At a given iteration t where a π-efficient solution ŝt is detected, we reduce Dα as follows:

Dt =






x ∈ Dt−1

∣∣∣∣∣∣∣∣∣∣∣

Π
(
f̃k(x) > λkf̃k(ŝt) + (1− λk)L̃0

k

)
> 0 , ∀k = 1, . . . , p

N
(
λkf̃k(ŝt) + (1− λk)L̃1

k ≥ f̃k(x)
)
< 1 , ∀k = 1, . . . , p

p∑

k=1

λk ≥ 1






.
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Hence, the admissible domain is iteratively defined by:

Dt =






x ∈ Dt−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

(cRkj + σRckj )xj ≥ λk(

n∑

j=1

cRkj ŝ
t
j + ε) + (1− λk)L0

k ∀k = 1, . . . , p

n∑

j=1

cLkjxj ≥ λk

(
n∑

j=1

(cLkj − σLckj )ŝ
t
j + ε

)

+ (1− λk)L1
k , ∀k = 1, . . . , p,

p∑

k=1

λk ≥ 1, λk ∈ {0, 1}






where ε is a positive real number chosen close to zero.
If λk = 1, the constraints

∑n
j=1(cRkj + σRckj )xj >

∑n
j=1 c

R
kj ŝ

t
j and

∑n
j=1 c

L
kjxj >

∑n
j=1(cLkj − σLckj )ŝ

t
j imply that C̃ŝt

doesn’t π-dominate C̃x. So C̃x is either π-dominated by another solution or x is N -efficient.
If λk = 0, the constraints

∑n
j=1(cRkj + σRckj )xj ≥ L0

k and
∑n
j=1 c

L
kjxj ≥ L1

k are always satisfied.

5.2. Technical description of the algorithm
A technical presentation of the proposed method for optimizing over a possibilistic efficient set is given in the algorithm

bellow where, at an iteration t, the programs to be solved are the following:

– (Pt) : max{
∑n
j=1 d

R
j xj |x ∈ Dt}.

– (Tt) is the efficiency test of an optimal solution xt of (Pt).
– (Qt) : max{

∑n
j=1 d

R
j xj | f̃k(x) = f̃k(st) ∀k ∈ {1, . . . , p} and x ∈ Dα} where st is an optimal solution of (Tt) if the

solution tested is not efficient.

Algorithm 1: Optimizing φ̃ over E(P̃ ).
Input parameters: ;

↓Ã(m×n): Matrix coefficients involved in the fuzzy constraints of (P̃ ).;

↓b̃(m×1): Right Hand Side fuzzy vector.;

↓C̃(p×n): Matrix of fuzzy objective function’s coefficients.;

↓d̃(1×n): Main Objective fuzzy Vector.;
Output: ;

↑xopt: Optimal Solution of the Main Problem (P̃E).;

↑φ̃opt: Optimal Main Objective fuzzy Value.;

Initialization: research← true , t← 0 ,Dt ← Dα ,φopt ← −∞
Searching for an Optimal Solution of (P̃E): ;

Solve the Relaxed Problem (Pt): [↑xt , ↑φt] = Pt(↓dR , Dt);
if (Pt) is not feasible then

(PE) is not feasible
else

while research=true do
Tt(↓xt): efficiency test;

if Tt(↓xt) is positive then
xopt ← xt , φopt ← φt , research← false

else
[↑steq , ↑φteq] = Qt(↓st , ↓dR ,Dt);
xopt ← steq , φ

opt ← φteq , t← t+ 1;

[↑xt , ↑φt] = Pt(↓dR ,Dt);
if (Pt)is unfeasible OR φt ≤ φopt then

research← false
end

end

end

end
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Figure 6. The search domain is D0 = D in gray color.

6. Illustrative example

Consider the following fuzzy bi-objective linear programming problem:

(P̃ )






“max”f̃1(x) = (2, 4, 0, 1
4
) x1 + (−3,−1, 1

4
, 0) x2

“max”f̃2(x) = (−1, 1, 0, 1
4
) x1 + (3, 4, 1

4
, 1

4
) x2

x ∈ D = {x ∈ Z2 | − 5x1 + 4x2 ≤ 6 ; 3x1 + x2 ≤ 9 ; x ≥ 0}
(6.1)

and let (P̃E) be the following main problem:

(P̃E)

{
max φ̃(x) = (−4,−3, 1, 1

2
)x1 + (1, 2, 3

2
, 1)x2

x ∈ E(P̃ )
. (6.2)

Suppose we want to get a satisfactory solution for (P̃Eπ ):

Iteration 1.

Step 1.1. (Initialization) Set φopt = −∞, ε = 0.01, L0
1 = −1, L0

2 = 0, L1
1 = −5, L1

2 = −3.
Solve the relative deterministic relaxed problem (P0) : max{φR(x) = −3x1 + 2x2 |x ∈ D}.

The obtained optimal solution is x0 =

(
0
1

)
with φ0 = 2 (see Fig. 6).

Step 1.2. (Testing π-efficiency of x0)

The obtained optimal solution for (TL{x0}) is s1 =

(
2
2

)
with ΘL = 2.5 6= 0. And that obtained for (TR{x0})

is s2 =

(
2
3

)
with ΘR = 17.75 6= 0. Thus, x0 is not π-efficient but s1 and s2 are π-efficient (Properties 4.10

and 4.11).
Step 1.3. (Searching for equivalent admissible solutions eventually better than s1 and s2 with respect to φR)

Solve (Q{s1}) : max{φR(x) = −3x1 + 2x2 |x ∈ D, f̃1(x) = f̃1(s1), f̃2(x) = f̃2(s1)}.
The obtained optimal solution is x1

eq = s1 and φ1
eq = −2.

Solve (Q{s2}) : max{φR(x) = −3x1 + 2x2 |x ∈ D, f̃1(x) = f̃1(s2), f̃2(x) = f̃2(s2)}.
The obtained optimal solution is x2

eq = s2 and φ2
eq = 0.

Step 1.4. Set xopt = x2
eq

(
2
3

)
and φopt = φ2

eq = 0. Reduce the search domain:

D1 = {x ∈ D | 4.25x1 − x2 − 8.01λ1
1 ≥ −2 ; 1.25x1 + 4.25x2 − 10.01λ1

2 ≥ 0 ;

2x1 − 3x2 − 3.51γ1
1 ≥ −6 ; −x1 + 3x2 − 6.51γ1

2 ≥ −3 ;

4.25x1 − x2 − 7.01λ2
1 ≥ −2 ; 1.25x1 + 4.25x2 − 14.01λ2

2 ≥ 0 ;

2x1 − 3x2 − 0.26γ2
1 ≥ −6 ; −x1 + 3x2 − 9.26γ2

2 ≥ −3 ;

λ1
1 + λ1

2 + γ1
1 + γ1

2 ≥ 1 ; λ2
1 + λ2

2 + γ2
1 + γ2

2 ≥ 1 ;

λ1
i , λ

2
i , γ

1
i , γ

2
i ∈ {0, 1}4 ,∀i = 1, 2}.
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Figure 7. The search domain is D1 in gray color and the optimal solution is achieved

Solving (P1) : max{φR(x) = −3x1 + 2x2 |x ∈ D1} provides the optimal solution x1 =

(
1
2

)
, λ1 = λ2 =

(
0
0

)
,

γ1 =

(
0
1

)
, γ2 =

(
1
0

)
and φ1 = 2 (see Fig. 7). CONTINUE.

Iteration 2.

Step 2.1. (Testing π-efficiency of x1)
(TL{x1}) is unfeasible, then x1 is π-efficient. STOP.

xopt = x1 =

(
1
2

)
is a satisfactory solution of (P̃Eπ ) and the relative objective fuzzy value is φ̃opt =

(−2, 1, 4, 5
2
).

7. Numerical results

The method was programmed under Matlab14 using the CPLEX (version12.2) for Matlab toolbox function
(cplexmilp). The instances were randomly generated and the program was run under windows10 installed on a PC
with Intel(R) CORE(TM)i7-2.20 GHz Processor and 8.00 Gb of RAM.

The computational results are summarized in Tables 2 and 3 that give the sizes (p × m × n) of instances and the
corresponding minimum, median and maximum CPU time (in seconds). They give also the corresponding minimum
median and maximum number of iterations. Computing minimum, median and maximum was performed on samples of

Table 2. Numerical results: Optimizing over a π-efficient set.

p = 3 p = 6 p = 8

m× n CPU (s) #iter CPU (s) #iter CPU (s) #iter
min = 0.05 min = 1 min = 0.35 min = 1 min = 0.05 min = 1

30× 60 med = 0.66 med = 2.5 med = 3.31 med = 2 med = 6.72 med = 2
max = 1.83 max = 7 max = 10.20 max = 4 max = 76.70 max = 4
min = 0.17 min = 1 min = 0.05 min = 1 min = 0.05 min = 1

60× 90 med = 1.90 med = 3.5 med = 14.81 med = 2.5 med = 76.41 med = 3
max = 7.28 max = 9 max = 41.68 max = 8 max = 230.45 max = 5
min = 0.84 min = 1 min = 7.62 min = 1 min = 2.12 min = 1

90× 120 med = 4.85 med = 3.5 med = 39.44 med = 3.5 med = 85.08 med = 3.5
max = 17.02 max = 6 max = 110.21 max = 6 max = 541.49 max = 4
min = 0.27 min = 1 min = 3.16 min = 1 min = 0.08 min = 1

120× 120 med = 3.88 med = 3 med = 34.69 med = 4 med = 96.13 med = 2
max = 11.22 max = 7 max = 103.99 max = 7 max = 715.79 max = 5
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Table 3. Numerical results: Optimizing over an N -efficient set.

p = 3 p = 6 p = 8

m× n CPU (s) #iter CPU (s) #iter CPU (s) #iter
min = 0.08 min = 1 min = 0.37 min = 1 min = 0.07 min = 1

30× 60 med = 0.61 med = 2.5 med = 3.36 med = 2.5 med = 3.75 med = 2
max = 1.75 max = 6 max = 15.80 max = 5 max = 66.10 max = 4
min = 0.18 min = 1 min = 0.05 min = 1 min = 0.05 min = 1

60× 90 med = 3.00 med = 5.5 med = 18.40 med = 3.5 med = 52.30 med = 2.5
max = 12.91 max = 8 max = 36.97 max = 6 max = 197.15 max = 6
min = 0.96 min = 1 min = 0.13 min = 1 min = 0.13 min = 1

90× 120 med = 2.52 med = 3 med = 22.49 med = 3 med = 75.65 med = 3
max = 10.23 max = 4 max = 87.99 max = 9 max = 703.80 max = 4
min = 0.28 min = 1 min = 1.97 min = 1 min = 0.08 min = 1

120× 120 med = 6.57 med = 4.5 med = 24.32 med = 2 med = 86.33 med = 2
max = 9.76 max = 6 max = 130.78 max = 7 max = 690.53 max = 4

10 instances of equal dimensions. Note that, in this implementation, we give medians instead of averages. As known, the
advantage of use of the median is that it’s much less affected by outlier values than the average would be.

Generating instances was performed as follows:
Elements of the fuzzy matrix Ã were constructed to be positive in order to avoid the unboundedness of the admissible

set. Ã is input as a juxtaposition of four matrices A1, A2, A3 and A4. Elements of A1 and A4 were randomly generated
following the uniform distribution on [1; 5] and they represent left and right spreads of those of Ã respectively. Elements
of A2 were randomly generated following the uniform distribution on [5; 20] and they represent lower modal values of
those of Ã. A3 gives the upper modal values: A3 = A2 +H, where elements of H represent the kernel’s amplitudes and
they were randomly generated following the uniform distribution on [1; 5]. The fuzzy matrix C̃ and fuzzy vectors b̃ and
d̃ were constructed in a similar way. Elements of C̃ and those of d̃ have kernel’s values randomly generated between −10
and 10.

The computational results listed in Tables 2 and 3 show that the algorithm is effective for finding both optimal
solutions: π-efficient and N -efficient solutions. CPU time taken to solve each of the generated problems is essentially
related to their sizes. In contrast, it seems that the number of iterations is not sensibly affected by the dimension of these
problems.

8. Conclusion

The interest in Fuzzy Multiple Objective Linear Programming follows from the need of its application to solve several
ambiguous operations research problems where parameters neither are ordinary numbers, nor its behaviors can be
modeled by known probability distributions. To modeling imprecise information in these application domains it seems
that Zadeh’s fuzzy sets theory has a successful use. However, further study remain to be required in this field, since
fuzzy numbers do not satisfy all properties that ordinary numbers have. Namely, equalities Ñ ÷ Ñ = 1̃ and Ñ 	 Ñ = 0̃
do not hold in most cases, which makes it not an easy task to rank fuzzy numbers and there is no way to solve a fuzzy
(single or multiple) linear programming program without transforming it into a deterministic one. The method presented
in this paper is based on possibility and necessity measures for defining fuzzy efficient solutions namely π-efficient and
N -efficient solutions, and also for searching for an optimal solution of a fuzzy linear function among the efficient ones of
a Fuzzy Multiple Objective Integer Linear Programming problem.

Acknowledgements. The authors would like to gratefully acknowledge editors and reviewers to give of their precious time
to read this paper and to share with us their suggestions and constructive comments.
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