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Abstract

In this paper, a method for optimizing a linear function over the integer Pareto-optimal set without having to deter-
mine all integer efficient solutions is presented. The proposed algorithm is based on a simple selection technique that
improves the linear objective value at each iteration. Two types of cuts are performed successively until the optimal
value is obtained and the current truncated region contains no integer feasible solution.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Integer linear programming problems involving simultaneous conflicting objective functions have re-
ceived considerable attention from several researchers and the literature in this area is extensive: see for in-
stance [1,5,10,16,17,24]. Solving such problems amounts to finding all efficient (non-dominated) solutions.

The techniques used for solving multiple objective integer linear programming (MOILP) problems are
diverse: cutting plane techniques, dual simplex procedures, branch and bound algorithms, dynamic pro-
gramming approaches or iterative techniques that consist of solving a sequence of progressively more
and more constrained single objective problems.

In practical applications of multiple criteria decision making, the decision makers often have to choose
some preferred point from the efficient set E. This involves the problem of finding efficient solutions and
describing the structure of E. Since, in many cases, the criteria are conflicting, the decision makers try to
optimize one compromise criterion—possibly a linear one—over the efficient set, which raises the problem
of finding a method for optimizing a function over the efficient set.
0377-2217/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2005.02.072
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In this paper, we focus on the problem of optimizing a linear function, denoted w, over the efficient set of
a MOILP problem. We address the general case where w is any linear function and not necessarily a linear
combination of the objective functions of the MOILP problem. A direct approach could consist of finding
all efficient solutions of the MOILP problem and then finding the best value of w on that set. In view of the
difficulty of determining the set of all efficient solutions, this approach is not appropriate for practical pur-
poses. We thus propose an implicit technique that avoids searching for all efficient solutions but guarantees
finding one that maximizes w.

A similar problem in the continuous case (i.e. optimizing w on the set of efficient solutions of a multiple
objective linear programming (MOLP) problem has been tackled in [4,7,8,19,21].

For the discrete case, the only method we are aware of is that of Nguyen [11] which only gives an upper
bound for the optimal objective value of w.

There are several reasons for studying such problems. For instance, Benson [3] describes a problem in
which a manufacturer of four different types of products has ten factories. The key performance measures
for a production plan x 2 S are profits a(x) and employment levels {f q(x) j 1 6 q 6 10} at each of the ten
factories. Profit is the main performance measure but a plan x is unacceptable if there exists one, y, in which
employment levels are at least as good for y as for x, for each factory. One thus has to optimize the profit on
the set of solutions that are also efficient from the employment point of view.

Another illustration can be encountered in combinatorial optimization (see [13]), where the minimum
maximal flow problem is modelled as an optimization of a linear function over the efficient set.

Let (V, s, t, E, c, o+, o�) denote a network the node set of which is V, with two designated nodes, source
s and sink t, arc set E, non-negative capacity ch for each arc h, incidence functions o+ and o� where o+h is
the node that arc h leaves and o�h is the node that arc h enters. A vector x = (. . . , xh, . . .) of dimension
equal to jEj is said to be a feasible flow if it satisfies the conservation equations and capacity constraintsP
fhjoþh¼igxh ¼

P
fhjo�h¼igxh for all nodes i 2 Vn{s, t} and 0 6 xh 6 ch for all h 2 E. The incidence matrix

is therefore defined as follows: A ¼ ðaihÞi2V nfs;tg;h2E with
aih ¼
þ1 if oþh ¼ i;

�1 if o�h ¼ i;

0 otherwise:

8><>:

The conservation equation becomes Ax = 0. The flow value /(x) of a feasible flow x is given by
/ðxÞ ¼

P
fhjoþh¼sgxh �

P
fhjo�h¼sgxh.

The problem stated above can be formulated as
minimize /ðxÞ
s:t: x 2 X E;

�

where /(x) = dx is a linear function of the flow x and XE is the efficient set of the multiple objective linear
programming problem defined as follows:
maximize Ix

s:t: x 2 X ;

�

where I is the identity matrix of dimension jEj, and X is the set of feasible flows defined by
X ¼ fxjx 2 RjEj; Ax ¼ 0; 0 6 x 6 cg.

The algorithm that we propose is inspired by the work of Ecker and Song [7] and Benson and Sayin [4]
for the continuous case. But, as is generally the case, passing from MOLP to MOILP is not trivial. For
instance, as observed in [16], when seeking to generate the efficient set of MOILP, the non-supported effi-
cient solutions can be missed when applying the so called Geoffrion�s principle (i.e. maximizing a weighted
sum of the criteria over the feasible set while letting the weights vary), see [16]. Since the methods used in
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[4,7] are not valid in our case, we mainly keep the idea of choosing the best direction for improving w at
each iteration. To be more specific let us introduce precisely the problem to be solved.

Mathematically, the MOILP problem is described as the problem of finding all efficient solutions of
ðPÞ max Zi ¼ CiX ; i ¼ 1; 2; . . . ; p

s:t: X 2 S;

�

where S ¼ D \ Zn, D ¼ fX 2 RnjAX ¼ b;X P 0g, A 2 Q

m�n, b 2 Q
m, p P 2; C1;C2; . . . ;Cp 2 Q

n are row
vectors, Z is the set of integers and Q is the set of rational numbers. We assume throughout the paper that
S is not empty and D is a bounded convex polyhedron. The set of all integer efficient solutions of (P) is
denoted by E(P). Efficiency and non-dominance are defined as follows (see [14,22,23]):

Definition 1. A point X 2 S is an efficient solution if and only if there is no X 2 S such that ZiðX ÞP ZiðX Þ
for all i 2 I ¼ f1; 2; . . . ; pg and ZiðX Þ > ZiðX Þ for at least one i 2 I. Otherwise, X is not efficient and
ðZ1ðX Þ; Z2ðX Þ; . . . ; ZpðX ÞÞ is said to be dominated.

The central problem that we are studying is:
ðP EÞ
max w ¼ dX

s:t: X 2 EðP Þ;

�

where d denotes an n dimensional row vector and the jth component of which, dj, is a rational number.

Let the relaxed problem be:
ðP RÞ
max w ¼ dX

s:t: X 2 S

�

and define the problem (Pi(S)), i 2 {1, 2, . . . , p} by
ðP iðSÞÞ
max Zi ¼ CiX

s:t: X 2 S.

�

We define the problem (Pi(D)), i 2 {1, 2, . . . , p} by
ðP iðDÞÞ
max Zi ¼ CiX

s:t: X 2 D.

�

It may happen that the optimal solution X0 of problem (Pi(S)) is not unique. In this case, there is another
feasible solution X1 5 X0 with Zi(X

1) = Zi(X
0). We refer to X1 as an alternate optimal solution of (Pi(S)).

A naive way of solving problem (PE) is to build the set E(P) of all efficient solutions of (P) and then to
optimize w = dX on that set. Our method avoids enumerating explicitly all efficient solutions of (P). The
detailed presentation of the algorithm is given in Sections 3 and 4. In Section 2 we introduce the notation
and establish a number of theoretical results that will help justifying the algorithm in Section 3. A flowchart
of the algorithm is produced in the Appendix A.

In Section 5, we illustrate by a numerical example, how the algorithm works. Some conclusions are deliv-
ered in Section 6.
2. Notation and preliminary results

Beside the notation already introduced for describing the problems (P) and (PE), we also use the nota-
tion introduced by Gupta and Malhotra [9] and Verma [18]:
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• Z1, Z2, . . . , Zp denote the criteria and w, the additional criterion;
• D1 is the set X 2 Rn1 jA1X ¼ b1;A1 2 Qm1�n1 ; b1 2 Qm1 ; ðm1; n1Þ 2 N�N;m1 6¼ 0; n1 6¼ 0;X P 0f g, which

is the current truncated region of D obtained by successive Gomory cuts introduced when optimizing
problem (P1(S)); S1 ¼ D1

T
Zn1 . Note that S1 ¼ S ¼ D

T
Zn1 , because Gomory cuts do not eliminate inte-

ger solutions from D.
• ðZ1

1; Z
1
2; . . . ; Z1

pÞ is the first non-dominated p-tuple corresponding to the optimal integer solution X1

obtained in D1, where Z1
i ¼ CiX 1, for i = 1, 2, . . . , p.

For k P 1, we have:

• X k 2 Znk is one optimal integer solution obtained in Dk (see below);
• Bk is the basis associated with solution Xk;
• ak;j 2 Q

mk�1 is the activity vector of xk,j with respect to the current truncated region Dk;
• Ik = {j j the vector ak,j is a column of the basis Bk} (indices of basic variables);
• Nk = {j j the vector ak,j is not a column of the basis Bk} (indices of non-basic variables);
• yk,j = (yk,ij) = (Bk)�1ak,j, where yk;j 2 Qmk�1;
• Ck ¼ fj 2 Nkjzk

1;j � c1
j P 0 and wk

j � dk
j 6 0g, where zk

1;j ¼ C1
Bk

yk;j; C1
Bk

is the vector of cost coefficients of
basic variables associated with Bk in vector C1 and c1

j is the jth component of vector C1; wk
j ¼ dBk yk;j, with

dBk the vector of cost-coefficients of basic variables associated with Bk in vector d;
• Dk ¼ X 2 Rnk jAkX ¼ bk;Ak 2 Qmk�nk ; bk 2 Qmk ; ðmk; nkÞ 2 N�N;mk 6¼ 0; nk 6¼ 0;X P 0f g for k P 2,

where Dk is the current truncated region obtained after having applied the cut
P

j2Nk�1nfjk�1gxj P 1, with

jk�1 2 Ck�1, or the cut dX P dXk and successive Gomory cuts if necessary in each of these cases;
Sk ¼ Dk

T
Znk .

Table 1 shows a tableau of the type that is used when applying the simplex or the dual simplex proce-
dure. It differs from the classical one in the bottom lines. There are all together p + 1 lines corresponding to
the criteria Z1, . . . , Zp and w; in each line, one finds the reduced cost zk

i;j � ci
j associated to the corresponding

criterion. In table 1, we have
Table
Generi

Tablea

X Bk

Reduc
tij ¼
yk;ij if j 2 N k;

ej if j 2 Ik;

�

ej is the jth column of the identity matrix of dimension mk · mk.
1
c simplex tableau

u Value of basic variable x1 x2 . . . xnk

xk,1 t11 t12 . . . t1nk

xk,2 t21 t22 . . . t2nk

. . . . . . . . . . . . . . ..
xk;mk tmk 1 tmk 2 . . . tmk nk

ed cost Zk
1 zk

1;1 � c1
1 zk

1;2 � c1
2 . . . zk

1;nk
� c1

nk

. . . . . . . . . . . .. . . .

Zk
p zk

p;1 � cp
1 zk

p;2 � cp
2 . . . zk

p;nk
� cp

nk

wk wk
1 � dk

1 wk
2 � dk

2 . . . wk
nk
� dk

nk
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2.1. Gomory cuts

In the algorithm, we use Gomory�s fractional cutting plane technique (see [20, p. 124] ) that we recall
briefly below.

Consider an integer linear program like (P1(S)). First we solve the associated linear programming relax-
ation of (P1(D)), say,
ðP 1ðDÞÞ
max Z1 ¼ C1X
s:t: X 2 D.

�

Consider an optimal basis if it exists; we denote by I and N respectively the basic index set and the non-
basic index set. We choose a basic variable that is not an integer.

Let xi ¼ ti0 be the righthand side of the ith constraint, i 2 I. The corresponding constraint
xi þ

P
j2N tijxj ¼ ti0 is xi ¼ ½ti0� þ fi0 �

P
j2N ½tij�xj �

P
j2N fijxj (using the notation t = [t] + f, where [t] is

the integer part of t and f is the fractional part of t; 0 6 f 6 1). Under the necessary conditions that xi

and xj, j 2 N, are integers, the Gomory cut is si ¼ �fi0 þ
P

j2N fijxj, where the slack variable si is a non-neg-
ative integer variable. This constraint is introduced in the simplex tableau and the problem is solved using
the dual simplex method. After a finite number of iterations, we either obtain an optimal integer solution or
we find that the problem is infeasible.

2.2. Testing efficiency

The following result (see [2, Theorem 3.1]) is used in various steps of the algorithm to test the efficiency
of a given feasible solution of problem (P).

Theorem 1. Let X* be an arbitrary element of the region S. X* 2 E(P) if and only if the optimal value of the

objective V is null in the following mixed integer linear programming problem:
ðPðX �ÞÞ
max V ¼

Pp
i¼1

wi

s:t:
CX ¼ IWþ CX �;

X 2 S; wi are real non-negative variables for i ¼ 1; 2; . . . ; p;

�
8>>><>>>:
where C is the m · n matrix, the ith row of which is Ci, i = 1, 2, . . . , p, I is the identity matrix (p · p) and

W ¼ ðwiÞi¼1;...;p.
2.3. Cuts of type I

The algorithm we propose is based on exploring the edges incident to a solution and cutting edges in-
stead of solutions.

Definition 2. Assume that jk 2 Nk. An edge Ejk
incident to a solution Xk is defined as the set
Ejk
¼ ðxiÞ 2 Dk

xi ¼ xk;i � hjk
yk;ijk

for i 2 Ik

xjk
¼ hjk

xa ¼ 0; for all a 2 Nk n fjkg

��������
8>><>>:

9>>=>>;;

where 0 < hjk

6 mini2Ik

xk;i

yk;ijk
jyk;ijk

> 0
n o

, hjk
is a positive integer and hjk

� yk;ijk
are integers for all i 2 Ik if

such integer values exist.
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Note that in our definition Xk does not belong to the edge Ejk
.

We present some results that will support the fact that the procedure terminates. The following theorem
addresses the case in which the optimal solution of (P1(S)) is not unique. Note that a sufficient condition for
the uniqueness of the optimal solution X1 of (P1(S)) is that the set J 1 ¼ fj 2 N 1jz1

1;j � c1
j ¼ 0g is empty.

Theorem 2. Let X1 be an optimal solution of problem (P1(S)). All integer feasible solutions of problem (P1(S))

alternate to X1 on an edge Ej1
of region D (or truncated region D1) emanating from it, in the direction of a

vector a1;j1
, j1 2 J1 with J1 ¼ fj 2 N1jz1

1;j � c1
j ¼ 0g, lie in the open half space

P
j2N1nfj1gxj < 1.

Proof. Let X1 be an optimal solution of (P1(D)). A1X 1 ¼
P

i2I1
a1;ix1;i ¼ b.

Let j1 2 J1; we have
P

i2I1
a1;ix1;i � hj1

a1;j1
þ hj1

a1;j1
¼ b, where hj1

is a non-zero positive scalar. Trivially,
a1;j1
¼
P

i2I1
a1;iy1;ij1

; hence: !
X
i2I1

a1;ix1;i � hj1

X
i2I1

a1;iy1;ij1
þ hj1

a1;j1
¼ b;X

i2I1

a1;iðx1;i � hj1
y1;ij1
Þ þ hj1

a1;j1
¼ b.
For 0 < hj1
6 mini2I1

x1;i

y1;ij1

jy1;ij1
> 0

n o
, we define X2 as follows:8
X 2 ¼
x2;i ¼ x1;i � hj1

� y1;ij1
; i 2 I1;

x2;j1
¼ hj1

;

x2;a ¼ 0; for all a 2 N 1 n fj1g;

><>:

which is a new integer feasible solution of (P1(S)), provided that hj1

is a positive integer and hj1
� y1;ij1

are
integers for all i 2 I1.

We now show that Z1(X2) = Z1(X1).
Z1ðX 2Þ ¼ C1X 2 ¼
X
i2I1

c1
i x2;i þ c1

j1
x2;j1
þ

X
a2N1nfj1g

c1
ax2;a

¼
X
i2I1

c1
i ðx1;i � hj1

y1;ij1
Þ þ c1

j1
hj1
¼
X
i2I1

c1
i x1i �

X
i2I1

c1
i hj1

y1;ij1
þ c1

j1
hj1

¼
X
i2I1

c1
i x1i � hj1

X
i2I1

c1
i y1;ij1

� c1
j1

 !
¼ Z1ðX 1Þ � hj1

ðz1
1;j � c1

j1
Þ.
As j1 2 J1, then z1
1;j � c1

j1
¼ 0. Thus Z1(X2) = Z1(X1).

X2 is an integer feasible solution of (P1(S)), alternate to X1, lying on an edge
Ej1
¼ ðxiÞ 2 RðjI1jþjN1jÞ

x2;i ¼ x1;i � hj1
� y1;ij1

; i 2 I1

x2;j1
¼ hj1

x2;a ¼ 0; for all a 2 N 1 n fj1g

�������
8><>:

9>=>;. ð1Þ
We have
P

j2N1nfj1gx2;j < 1, since x2,j = 0 for all j 2 N1n{j1}. Thus, the point X2 lies in the open half spaceP
j2N1nfj1gxj < 1. h

Eq. (1) enables us to compute the integer feasible alternate solutions when the optimal solution obtained
by solving (P1(S)) is not unique.

The following theorem suggests a cut that can be viewed as a generalization of Dantzig�s cut (see [15, p.
178] and [6]); it truncates a whole edge while the latter truncates only a point. Obviously, it leads to a reduc-
tion of the feasible set that is more drastic than the classical Dantzig cut.
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Theorem 3. An integer feasible solution of problem (P1(Sk)) that is distinct from Xk and not on an edge Ejk
of the

truncated region Dk (or region D) through an integer optimal solution Xk of (P1(S)) lies in the closed half spaceX

j2N knfjkg

xj P 1. ð2Þ
Proof (by contradiction). Let eX ¼ ðexiÞ be an integer feasible solution of problem (P1(S)) not on an edge
Ejk

such that it does not satisfy (2). We will prove it is impossible. This assumption implies (Theorem 2) thatexj ¼ 0, for all j 2 Nkn{jk}. There are two cases to consider: either exjk
> 0 or exjk

¼ 0.

Case 1. exjk
> 0.

• If exjk
> mini2Ik

xk;i

yk;ijk

���yk;ijk
> 0

n o
¼ xk;q

yk;qjk
(say), then exk;q ¼ xk;q � exjk

yk;qjk
< 0, which makes the solution

infeasible.
• If exjk

6 mini2Ik

xk;i

yk;ijk

���yk;ijk
> 0

n o
, then exjk

6
xk;i

yk;ijk
8i 2 Ik, and it is easy to show that, exk;i ¼ xk;i � exjk

yk;ijk
,

which implies that eX lies on the edge Ejk
, contrary to the hypothesis.
Case 2. exjk
¼ 0, then the index sets of basic and non-basic variables in the optimal tableau corresponding

to eX are respectively Bk and Nk, and therefore eX ¼ X k, contrary to the hypothesis.

Each of these cases leads to a contradiction. So the initial assumption (eX does not satisfy the inequality
(2) must be false. Hence exj > 0 for at least one j 2 Nkn{jk} implying that eX lies in the closed half spaceP

j2Nknfjkgxj P 1. h

Cut of type I. The inequality (2) introduced in this theorem will be called a cut of type I. It will be used in
the method in order to cut off all integer feasible solutions on an edge incident to an optimal solution Xk of
(P1), including Xk itself, from the current feasible domain Sk.

Remark 4. Let Xk be an optimal solution of (P1(Sk)) and suppose that Ck is empty (i.e. there is no edge like
mentioned in Theorem 3). Then an integer feasible solution of (P1(Sk)) distinct from Xk lies in the closed
half space defined by the Dantzig cut
X

j2N k

xj P 1. ð3Þ
We now calculate the value w0k of the linear function w at any solution X 0k ¼ ðx01; x02; . . . ; x0nÞ lying on Ejk
:

w0k ¼
Xn

j¼1

dk
j x0j ¼

X
i2Ik

dk
i ðxk;i � h� yk;ijk

Þ þ dk
jk
� h ¼ dk

jk
�
X
i2Ik

dk
i � yk;ijk

 !
hþ

X
i2Ik

dk
i xk;i;�n o
where h is an integer verifying 0 < h 6 h0
jk

and h0
jk

is the integer part of mini2Ik

xk;i

yk;ijk

��yk;ijk
> 0 . We put: !
bk ¼ dk
jk
�
X
i2Ik

dk
i � yk;ijk

. ð4Þ
Then along an edge Ejk
; jk 2 Ck, we have bk P 0. Therefore, the values of w0k are increasing and w0k

reaches its maximum for h ¼ h0
jk

.
Finally we recall a well known result (see [12]).

Corollary 5. A point X0 that is a unique solution of the integer linear programming problem
ðP iðSÞÞ max Zi ¼ CiX
s:t: X 2 S;

�

where Zi is any of the objective functions of problem (P), is efficient.



M. Abbas, D. Chaabane / European Journal of Operational Research 174 (2006) 1140–1161 1147
This corollary follows directly from the definition of efficiency. Of course, if X0 is not unique, then it may
be dominated by another optimal solution of (Pi).
3. Informal description of the procedure

This section describes informally but precisely the algorithm that will be further detailed in Section 4. We
prove that the algorithm yields an optimal solution of (PE) in a finite number of steps. Before starting the
description we introduce another type of cut.

Cut of type II. The following inequality is called a cut of type II:
dX P wopt. ð5Þ

Such cuts are imposed, at some occasions that will be made precise below, after Xopt and wopt have been
updated as a consequence of having found a new better efficient solution of (P).

3.1. Finding an efficient solution

Firstly, we search for a first efficient solution of (P). Set S1 to S and D1 to D. We start from X1, an opti-
mal solution of (P1(S1)). If it is efficient, it is a first efficient solution of (P) and we initialize Xopt = X1 and
wopt = dX1. If not, either C1 is empty and we apply a Dantzig cut which reduces the domain D1 or it is not
and we explore the edges associated with C1 searching for an efficient solution of (P). If we find one, say X 0i,
on one of the edges, we can initialize Xopt and wopt. Otherwise, we choose one of the edges (for instance the
one that contains more integer feasible solutions of (P1(S1)) and we apply a cut of type I which reduces the
domain D1; we apply the dual simplex algorithm, and Gomory cuts if necessary, to obtain X2, an optimal
solution of (P(S2)). We continue from X2 as we did from X1 and iteratively until an efficient solution is ulti-
mately found. Suppose it is obtained at iteration r; the efficient solution can either be Xr (optimal solution
of (P1(Sr)) or a solution X 0r on one of the edges corresponding to Cr.

Proposition 6. Under the hypothesis that S is not empty, and D bounded, the procedure ends up with an

efficient solution of (P).

Proof. Since D is bounded, S is non-empty and finite. Each cut of Dantzig or of type I reduces strictly the
domain. Hence the procedure terminates with an efficient solution because at least one such solution exists
in S. h
3.2. General iteration

We now describe a general iteration k, which is posterior to iteration r at which Xopt and wopt were ini-
tialized (see Section 3.1).

Dk is the current feasible region; it has been obtained by imposing successively on D three types
of cuts (plus, possibly, Gomory cuts); Dantzig cuts, cuts of type I (see after Theorem 3) and cuts
of type II (see Eq. (5)). Solve the problem (P1(Sk)). It differs from (P1(Sk�1)), solved at the previous
iteration, by the adjunction of a single constraint. We start from the previous simplex tableau and we
use the dual simplex algorithm possibly with Gomory cuts. It ends up with one of the following
conclusions:

• either the current feasible region is empty,
• or an optimal solution Xk of (P1(Sk)) is found.
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In the former case, the algorithm stops and outputs Xopt as an optimal solution of (PE). If a new optimal
solution Xk is found, there are two cases to be considered.

1. Xk is not efficient or Xk is efficient and dXk < wopt. If Ck is empty we apply a Dantzig cut which reduces
the domain Dk. Otherwise, we start exploring all edges incident to Xk corresponding to Ck until an effi-
cient solution improving wopt is found.
a. If no such an efficient solution is found after all edges are examined, choose one of these edges and

apply a cut of type I which reduces Dk; this leads to iteration k + 1.
b. If an efficient solution X 0k improving on wopt is found, stop the exploration of the edges, update Xopt

and wopt and apply a cut of type II: dX P dX 0k. This cut does not necessarily reduce the domain Dk (in
case dX k ¼ dX 0k). Start iteration k + 1.
2. In the second case, Xk is efficient and dXk P wopt. Either we apply a Dantzig cut (if C = ;) or we explore
the edges incident to Xk corresponding to Ck as above, but only those on which w strictly increases
(b > 0), excluding those edges on which w remains constant (b = 0). Indeed, exploring the edges on
which w remains constant can not bring us a new efficient solution better than Xopt. Except for this
restriction on the edges to be considered, the search is done as in the previous case; it results in a Dantzig
cut or a cut of type I, if no efficient solution better than Xk is found, or in a new efficient solution X 0k
better than Xk and a cut of type II.
Proposition 7. After an iteration k, with k P r, is completed, and provided the algorithm did not stop (i.e. a

solution Xk was found), either the domain Dk is strictly reduced or the best value of w so far, wopt, has strictly

improved.

Proof. We see from the description of the general iteration that, during iteration k, either a cut of type I or
a Dantzig cut is applied (which strictly reduces the domain) or a new efficient solution is found, that
improves wopt. h

Note that both events listed in the proposition may occur; it happens when Xk is efficient, improves wopt

and the exploration of the edges incident to Xk does not yield a better efficient solution X 0k. We are now in
position to prove the following theorem.
Theorem 8. If S is non-empty and D is bounded, then

(1) the algorithm terminates in a finite number of iterations;

(2) the solution Xopt is an optimal solution of problem (PE).
Proof. Proposition 6 guarantees that we can obtain an initial efficient solution of (P), at iteration r, r P 1.
By Proposition 7, we know that at each iteration k, with k P r, the domain is strictly reduced (by a Dantzig
cut or a cut of type I) or wopt strictly increases.

Obviously, since the domain S is finite, it may not be strictly reduced an infinite number of times. For the
same reason, only a finite number of improvements of w = dX may be observed when X moves in the finite
set S. This proves that the algorithm stops after a finite number of iterations.

Provided S is non-empty and D is bounded, the algorithm stops at iteration k > r if and only
if the problem (P1(Sk)) is infeasible; this is seen from the fact that, the dual simplex algorithm, at
some stage, possibly after the adjunction of Gomory cuts, can not perform any pivot operation. The
current value of wopt at that iteration is optimal and Xopt is an optimal solution. This is due to the fact
that
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• Dantzig cuts only eliminate one solution, Xk, that has been explored;
• cuts of type I only eliminate edges that have been explored, i.e. on which there are no efficient integer

solutions better than the current optimal solution;
• cuts of type II only eliminate solutions that are strictly worse than the current optimal solution;
• Gomory cuts do not eliminate integer solutions. h
4. Technical presentation of the algorithm

We give a technical description of the algorithm presented in the previous section. An initial step is
added, just to check whether, by chance, we could solve problem (PE) just by solving the relaxed problem
(PR). The flowchart of this algorithm is in the Appendix.

Step 1. We solve the relaxed problem (PR). Let X* be an optimal solution. This solution is tested for effi-
ciency by solving problem (P(X*)) stated in Theorem 1 (see Section 2.2).

If it is efficient, then it is also a solution of (PE) and the algorithm terminates. Otherwise, we go
to Step 2.

Step 2. Let wopt = � 1. We solve the problem (P1(S)). (One may alternatively consider any of the prob-
lems (Pi(S); i = 2, 3, . . . , p) instead of (P1(S)).)
2.1. If J 1 ¼ fj 2 N 1jz1

1;j � c1
j ¼ 0g ¼ ;, then the optimal solution found, X1, is unique and it is effi-

cient (Corollary 5). Let w1 = dX1, set wopt to w1, set Xopt to X1 and go to step 3.
2.2. If J1 5 ;, then the optimal solution X1 of problem (P1(S)) may not be unique, test the effi-

ciency of X1 (Section 2.2); if it is not efficient go to step 3; otherwise let w1 = dX1, set wopt

to w1, set Xopt to X1, and go also to step 3.
Step 3. Let k = 1 and perform the following sub-steps:
3.1. Construct the set Ck ¼ fj 2 N kjzk

1;j � c1
j P 0 and wk

j � dk
j 6 0g.

• If Ck = ;, then go to step 3.2 and the cut in that step becomes the Dantzig cut
P

j2Nk
xj P 1.

• Otherwise, let c = Ck. Go to (a).
(a) If c = ;, then let jk 2 Ck and go to (sub-step 3.2). Otherwise, select jk 2 c and calculate h0

jk�n o

the integer part of mini2Ik

xk;i

yk;ijk

��yk;ijk
> 0 .

• If h0
jk
¼ 0, then there is no integer feasible solution on the edge Ejk

, put c :¼ cn{jk} and go to
(a).

• Otherwise, if h0
jk

P 1, then go to (b).

(b) If Xk is efficient and dXk P wopt, then calculate the value of the parameter bk defined in

Eq. (4). If this value is not equal to zero, then go to (c), otherwise, put c :¼ cn{jk} and
go to (a).If Xk is not efficient or dXk < wopt, then go to (c) (the edge Ejk

is explored regard-
less of the value of bk).

(c) Explore the edge Ejk
, searching for a feasible solutions of (P1(S)) corresponding to h and

test for efficiency starting from h ¼ h0
jk

until h = 1 (h is a positive integer). Once a first inte-
ger efficient solution is found, say X 0k, such that dX 0 > wopt, set Xopt to X 0k and wopt to dX 0k
and go to sub-step 3.2. If there is no integer efficient solution on this edge, then put
c :¼ cn{jk} and go to (a).
3.2. Let k :¼ k + 1. Define the new truncated region Dk as the subset of Dk�1 obtained by applying
the cut dX P dX 0k�1 (cut of type II) and using the dual simplex method and Gomory
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cuts—whenever they are needed—to find a new optimal solution Xk. Set Xopt to Xk and wopt to
dXk and go to sub-step 3.1.

3.3. Let k :¼ k + 1. The new truncated region Dk is obtained as a subset of Dk�1 (or D if k = 1) by
applying the specified cut (Dantzig cut or cut of type I) and using the dual simplex method and
Gomory cuts—whenever they are needed—to find a new optimal solution Xk; let wk = dXk.

Set the variable Xopt to Xk and wopt to wk if the solution Xk is efficient and dXk > wopt; go to sub-
step 3.1, otherwise, go to sub-step 3.1.

Terminal Step. The procedure terminates either at the first step when the solution X0 is efficient or the

impossibility of pivot operations appears indicating that the current region contains no integer feasible
point. The optimal solution is then Xopt and its value on criterion w is wopt.
5. Numerical illustration

Consider the following example (Gupta [9])
Tablea

Basis

x1

x4

x2

x5

Z1
1;j �

w1
j � d
ðPÞ

max Z1 ¼ x1 þ 2x2

max Z2 ¼ 3x1 � 2x2

max Z3 ¼ �x1 þ 2x2

s:t:

x1 þ x2 6 7;

2x1 6 11;

2x2 6 7;

x1; x2 P 0 and integers.

8>>><>>>:

8>>>>>>>>>><>>>>>>>>>>:

Let the main problem be
ðP EÞ
max W ¼ �2x1 � 3x2

s:t: x1; x2 2 EðP Þ

�

(see Fig. 1 below).

Step 1. The relaxed problem (PR) is being solved. The optimal solution is w0 = 0 for X* = (0, 0) 0 which is
not efficient. Go to step 2.
u I

Value of basic variable x1 x2 x3 x4 x5 x6

4 1 0 1 0 0 �1
3 0 0 �2 1 0 2
3 0 1 0 0 0 1
1 0 0 0 0 1 �2

c1
j 10 0 0 1 0 0 1

1
j �17 0 0 �2 0 0 �1
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Fig. 1. The feasible region S1 ¼ S ¼ D \ Z2.
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Step 2. We solve the problem (P1(S)) and let wopt = �1. The results of solving problem (P1(S)) are sum-
marized in Tableau I.

The optimal solution X1 = (4,3) 0 is unique thus it is efficient (Corollary 5). Let it be a first efficient solu-
tion that corresponds to w1 = �17.

We have, dX1 = �17, then wopt = �17 and Xopt = (4, 3) 0.

k = 1; I1 = {1, 2, 4, 5}, N1 = {3, 6}.
C1 ¼ fj 2 N 1jz1
1;j � c1

j P 0 and w1
j � d1

j 6 0g ¼ f3; 6g 6¼ ;. We put c = C1 = {3, 6}.
Let j1 = 3 2 c. Since X1 is efficient and dX1 = �17 > wopt = �1, then we calculate the value of b1;

b1 = 0�[(�2)(1) + (�3)(0)] = 2 > 0. We start exploring the edge E3; we calculate h0
3 ¼ bMinf4

1
gc ¼ 4.

For h = 4 (the best value of h yielding an increase in w), the corresponding solution on the edge
E3 is
0 1 2 3 4 5 6
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X
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Fig. 2. The reduced region S2 ¼ D2 \ Z2.



Tablea

Basis

x1

x4

x2

x5

x3

Z2
1;j �

w2
j � d
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x1
1 ¼ 4� 4ð1Þ ¼ 0;

x1
4 ¼ 3� 4ð�2Þ ¼ 11;

x1
2 ¼ 3� 4ð0Þ ¼ 3;

x1
5 ¼ 1� 4ð0Þ ¼ 1;

x1
3 ¼ 4;

x1
6 ¼ 0.

8>>>>>>><>>>>>>>:

The solution X 01 ¼ ð0; 3Þ

0 is being tested for efficiency and we obtain w1 = w2 = w3 = 0; V* = 0. Thus X 01 is
efficient.

We calculate w01 ¼ ð�2;�3Þ 0
3

� �
¼ �9. As w01 > wopt ¼ �17, then wopt = �9 and Xopt = (0, 3) 0.

Let k :¼ k + 1 = 2, we cut by �2x1�3x2 P �9 (see Fig. 2).
After adjusting the tableau above for the reduced feasible region, and applying the dual simplex method

and Gomory method, the optimal feasible solution is X2 = (0, 3) 0, which is efficient. It corresponds to
w2 = �9; wopt = �9 and Xopt = (0, 3) 0 (see Tableau II).

I2 = {1, 2, 3, 4, 5}, N2 = {6, 7}.

C2 ¼ fj 2 N 2jz2
1;j � c1

j P 0 and w2
j � d2

j 6 0g ¼ f6; 7g 6¼ ;. Let c = C2.
u II

Value of basic variable x1 x2 x3 x4 x5 x6 x7

0 1 0 0 0 0 � 3
2

1
2

11 0 0 0 1 0 3 �1
3 0 1 0 0 0 1 0
1 0 0 0 0 1 �2 0
4 0 0 1 0 0 1

2 � 1
2

c1
j 6 0 0 0 0 0 1

2
1
2

2
j �9 0 0 0 0 0 0 �1

0 1 2 3 4 5 6
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Fig. 3. The reduced region S3 ¼ D3 \ Z2.



Tableau III

Basis Value of basic variable x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 1 0 0 0 0 0 0 �2 1
x4 9 0 0 0 1 0 0 0 4 �2
x2 2 0 1 0 0 0 0 0 1 0
x5 3 0 0 0 0 1 0 0 �2 0
x3 4 0 0 1 0 0 0 0 1 �1
x6 1 0 0 0 0 0 1 0 �1 0
x7 1 0 0 0 0 0 0 1 1 �2

Z3
j � c1

j 5 0 0 0 0 0 0 0 0 1

w3
j � d3

j �8 0 0 0 0 0 0 0 1 �2
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Let j2 ¼ 6; h0
6 ¼ 3. Since X2 is efficient and dX2 = wopt = �9, then we calculate the value of b2;

b2 ¼ 0� ½ð�2Þð� 3
2
Þ þ ð�3Þð1Þ� ¼ 0. We do not explore the edge Ej2

.

Let c :¼ cn{6} and consider the second index j2 = 7 2 c; h0
7 ¼ Min 0

1
2

n oj k
¼ 0. No integer efficient solu-

tion exists in this direction.
c :¼ cn{7} = ;, then there is no incident edge containing efficient solution.
Let k = 3 and we cut the current feasible region by

P
j2N2nf7gxj P 1() x6 P 1.

From the third line of the simplex matrix in Tableau II, we can write the equation
x2 þ x6 ¼ 3) x6 ¼ 3� x2 () 3� x2 P 1() x2 6 2 (see Fig. 3).

We add this constraint at the bottom of Tableau II and apply the dual simplex method to obtain Tableau
III. The solution found is X3 = (1, 2) 0 and after solving the problem (P(X3)) for testing efficiency, we find
that w1 = 4, w2 = 4, w3 = 0, x1 = 3, x2 = 3 and V* = 8, then X3 is not efficient.

Now, I3 = {1, 2, 3, 4, 5, 6, 7}, N3 = {8, 9}.
C3 = {9}5;. Let c = C3.
Let j3 = 9 2 c and calculate h0

9 ¼ Min 1
1

� �� 	
¼ 1.

As X3 is not efficient, we do not calculate b.
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Fig. 4. The feasible region S ¼ D4 \ Z2.



0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X
2

X
1

Fig. 5. The feasible domain S5 represented by the circles.

Tableau IV

Basis Value of basic variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 3 1 0 0 0 0 0 0 0 1 �2
x4 5 0 0 0 1 0 0 0 0 0 4
x2 1 0 1 0 0 0 0 0 0 0 1
x5 5 0 0 0 0 1 0 0 0 0 �2
x3 3 0 0 1 0 0 0 0 0 �1 1
x6 2 0 0 0 0 0 1 0 0 0 �1
x7 0 0 0 0 0 0 0 1 0 �2 1
x8 1 0 0 0 0 0 0 0 1 0 �1

Z4
1;j � c1

j 0 0 0 0 0 0 0 0 0 1 0

w4
j � d4

j �9 0 0 0 0 0 0 0 0 �2 1

Tableau V

Basis Value of basic variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 4 1 0 0 0 0 0 0 0 0 0 �3 1
x4 3 0 0 0 1 0 0 0 0 0 0 4 �2
x2 0 0 1 0 0 0 0 0 0 0 0 1 0
x5 7 0 0 0 0 1 0 0 0 0 0 �2 0
x3 3 0 0 1 0 0 0 0 0 0 0 1 �1
x6 4 0 0 0 0 0 1 0 0 0 0 �1 �1
x9 1 0 0 0 0 0 0 0 0 1 0 0 �1
x8 2 0 0 0 0 0 0 0 1 0 0 �1 0
x10 1 0 0 0 0 0 0 0 0 0 1 �1 0
x7 1 0 0 0 0 0 0 1 0 0 0 1 �2

Z5
1;j � c1

j 4 0 0 0 0 0 0 0 0 0 0 0 1

w5
j � d5

j �8 0 0 0 0 0 0 0 0 0 0 1 �2
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For h = 1, the corresponding feasible solution on the edge E9 is X 03 ¼ ð0; 2Þ
0, which is not efficient (since

w1 = 4, w2 = 4, w3 = 0, x1 = 2, x2 = 3 and V* = 8). We have c :¼ cn{9} = ;.
Let k = 4 and cut by x8 P 1 or, equivalently, x2 6 1; we obtain the reduced region as shown in Fig. 4.
X4 = (3, 1) 0, which is not efficient (V* = 8 5 0).
I4 = {1, 2, 3, 4, 5, 6, 7, 8}, N4 = {9, 10}; C4 = {9} 5 ;.
Let c = C4 and let j4 = 9 2 c; h0

9 ¼ bMinf0
1
gc ¼ 0. No integer feasible solution in this direction.

c :¼ cn{9} = ;.
Let k = 5 and cut by

P
j2N4nf9gxj P 1() x10 P 1, which is equivalent to x2 6 0 (as shown in Fig. 5).

By adding this constraint at the bottom of Tableau IV and solving the new problem, we obtain Tableau
V.

X5 = (4, 0) 0, (V* = 13 5 0) which is not efficient.
I5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, N5 = {11, 12}. C5 = {12} 5 ;. Let c = C5 and we take j5 = 12 2 c; we

have, h0
12 ¼ bMinf4

1
gc ¼ 4;

For h = 4, X 05ð4Þ ¼ ð0; 0Þ
0 ðV � ¼ 18 6¼ 0Þ ) X 05ð4Þ is not efficient; for h = 3, X 05ð3Þ ¼

ð1; 0Þ0 ðV � ¼ 16 6¼ 0Þ ) X 05ð3Þ is not efficient; for h = 2, X 05ð2Þ ¼ ð2; 0Þ
0 ðV � ¼ 13 6¼ 0Þ ) X 05ð2Þ is not

efficient; for h ¼ 1) X 05ð1Þ is not efficient. None of the solutions on edge E12 is efficient. c :¼
cn{12} = ;.

Let k = 6 and cut by x11 P 1() x2 6 �1 out of the feasible region, and the algorithm, then terminates.
The optimal solution is then wopt = �9 and X opt ¼ ð0; 3Þ0.

This example was first presented by Gupta [9] to find the set of integer efficient solutions
EðP Þ ¼ ð4; 3Þ0; ð5; 2Þ0; ð3; 3Þ0; ð4; 2Þ0; ð5; 1Þ0; ð2; 3Þ0; ð5; 0Þ0; ð1; 3Þ0; ð0; 3Þ0
� �

.

However, our algorithm optimizes the linear function w = �2x1�3x2 without having to determine all
these solutions but only E 0 = {(4, 3) 0, (0, 3) 0}.
6. Conclusion and comments

The proposed algorithm solves problem (PE) by using classical linear programming procedures without
having to enumerate all the efficient solutions. Of course the algorithm may generate several dominated
solutions but it provides a shorter way to the optimal one.

A method that would avoid generating dominated solutions would of course be preferable, if such a
method exists. The problem is difficult however; it is a favorite topic for theoretical studies and is still open
[11].

Our algorithm has been tested on several instances of different sizes. It has in particular been compared
to variants that consider stronger cuts of type II and use them in some cases in which we use cuts of type I.
It appears—on several examples—that favoring cuts of type I in the design of the algorithm results in
quicker reduction of the domain than with cuts of type II, even in their stronger form. Further experimental
(or theoretical) validation of this empirical observation is needed.

Another approach to the problem is to try to work out a solution method in the criteria space instead in
the decision variable space. This will be the subject of future investigations.
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