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Abstract

In this paper, we propose a new exact algorithm, using an augmented weighted Tchebychev norm, for
optimizing a linear function on the efficient set of a multiple objective integer linear programming problem.
This norm is optimized progressively by improving the value of the linear criteria and going through some
efficient solutions. The method produced not only the best efficient solution of the linear objective function
but also a subset of nondominated solutions that can help decision makers to select the best decision among
a large set of Pareto solutions.

Keywords: integer programming; multiple objective; Tchebychev metrics

1. Introduction

In the past two decades, researchers and practitioners have shown increased interest in the problem
of optimizing a linear function on the efficient set of multiple objective linear programming problem
(MOLP). Several methods and algorithmic ideas have been developed—in general, these approaches
can be classified and grouped according to the methodological concepts—which include, among
others, adjacent vertex search technique (Philip, 1972; Ecker and Song, 1994; Fülöp, 1994), non-
adjacent methods (White, 1996; Dauer and Fosnaugh, 1995), dual approach (Thach et al., 1996),
etc. An overview of these approaches can be found in Yamamoto (2002).

In addition to the continuous case, few algorithms have been suggested for solving the problem
involving discrete decision variables. For the first time Nguyen (1992) made an attempt to optimize
on the integer efficient set, where only an upper bound value for the main objective is proposed. The
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exact algorithm was developed by Abbas and Chaabane (2006) based on a simple selection technique
that improves the main objective value at each iteration. Two types of cuts are used and performed
successively until the optimal value is obtained and the current truncated region had no integer
feasible solution (see also Chaabane, 2007). Jorge (2009) developed another approach that defines
a sequence of progressively more constrained single-objective integer problems that successively
eliminates undesirable points. The most recent work on this was conducted by Chaabane and Pirlot
(2010), which combines ideas from the above-mentioned exact algorithms. In this paper, we propose
an exact algorithm, using an augmented weighted Tchebychev norm, to reduce the admissible region
by the successive addition of constraints. Subprograms that were integrated in the above methods
are now avoided. The technique produced two outputs: an optimal efficient solution and a subset
of efficient solutions.

Consider the multiple objective integer linear programming (MOILP) problem

(P) V max{Cx, x ∈ D}, (1)

where D = S ∩ Z with S = {x ∈ Rn | Ax ≤ b; x ≥ 0} is a nonempty bounded polyhedron; A ∈ Zm×n,
b ∈ Zm×1, C = (ci)i∈{1,...,p} ∈ Zp×n and p ≥ 2.

Unlike single-objective problems, the resolution of multiple criteria problems imposes a set of
feasible solutions, using the property that no improvement on any criterion is possible without sacri-
ficing on at least one other criterion. These solutions are called efficient solutions or nondominated
solutions, which are defined as follows:

A feasible solution x̂ ∈ D is said to be an “efficient solution” of (P) if and only if there is no feasible
solution x ∈ D such that Cx ≥ Cx̂ and Cx �= Cx̂ (cix ≥ cix̂ for all i = 1, . . . , p and cix > cix̂ for at
least one i). The point ẑ = Cx̂ is then called “nondominated vector.” Otherwise, x̂ is not efficient
and ẑ = Cx̂ is said to be dominated by z = Cx.

x̂ ∈ D is called weakly efficient if there is no x ∈ D such that Cx > Cx̂, i.e., cix > cix̂ for all
i = 1, . . . , p. The point ẑ = Cx̂ is then called weakly nondominated objective vector.

E (P) and Z(P) will be used henceforth to denote, respectively, the set of all efficient solutions of
problem (P) and their images in the outcome space defined by the objective vector functions.

A supported efficient solution is an optimal solution of the weighted single-objective problem,

max{λtCx | x ∈ D},

where λ ∈ Rp
+ is a weight vector with strictly positive components, λi, i = 1, . . . , p.

The problem of optimization over the efficient set of the MOILP problem (P) is given by(
PE

)
max{φ = dtx; x ∈ E (P)}, (2)

where φ(x) = dtx is linear and called “main objective,” d ∈ Zn. This problem is very difficult because
of nonconvexity of D and absence of information about the admissible region E (P) (the problem is
to be solved without solving (P)).

Consider the relaxed problem(
PR

)
max{φ = dtx, x ∈ D}. (3)

Generally, E (P) �= D. Otherwise, if (D) is completely efficient, E (P) can be substituted by D and,
in such cases, solving

(
PE

)
is equivalent to solving

(
PR

)
.
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When Z(P) is not uniformly dominant (the image of D in the criteria space has at least one weakly
nondominated solution), a weighted Tchebychev program is not appropriate for our approach;
however, an augment weighted Tchebychev metrics can be used (see Steuer, 1986). This process
will allow nondominated vector solutions to be characterized and overcome the delicate case of
unsupported solutions (see Bowman, 1976). In the next section, we briefly review some basic
definitions, results, and foundations of Tchebychev norms. In Section 3, the algorithm is formally
presented, relative propositions are provided to prove the finiteness and the convergence properties,
and an illustrative example concludes the section. Section 4 describes details of the implementation
and computational experiments. Finally, some conclusions and remarks are provided in the last
section.

2. Tchebychev norms and preliminary results

The Tchebychev theory, which first originated from Bowman (1976), and its associated properties
have been successfully exploited. A. Wierzbicki was one of the first authors to use a Tchebychev-
based achievement scalarizing function for reference-point multiobjective programming methods
(see Wierzbicki, 1980), within the scope of interactive algorithms for multiple objective optimization
(see, for example, Steuer and Choo, 1983, and for the more recent version of Steuer’s Tchebychev
algorithm, Luque et al., 2010), in algorithms for nonlinear integer bicriteria problems (Eswaran
et al., 1989) for solving biobjective integer programs (Ralphs et al., 2006) and other methods (Alves
and Clı́maco, 2000; Karaivanova et al., 1993; Neumayer and Schweigert, 1994; Schandl et al., 2001).

Moreover, Bowman (1976) proved that the Tchebychev norm’s scalarization is appropriate for
generating the nondominated objective vectors set, particularly for those that are unsupported.
The range of the nondominated objective vectors in the feasible objective region provides valuable
information about MOIL problem P provided the objective functions are bounded on the feasible
region. Upper bounds of the nondominated solutions set are available in the ideal objective vector
z� ∈ Rp. Its components z�

i are obtained by maximizing each of the objective functions individually
in the feasible region D. A vector strictly better than z� is called a utopian objective vector z��. We
consider � the weighting vectors space such that

� =
{

β ∈ Rp | 0 < βi < 1,

p∑
i=1

βi = 1

}
.

A weighted Tchebychev norm in Rp is the max norm (l∞ norm) defined as

‖(z1, . . . , zp)‖β
∞ = max

i=1,...,p

{
βi | zi |

}
.

The related distance is

‖z�� − z‖β
∞ = max

i=1,...,p

{
βi | z��

i − zi |
}
. (4)

Let z ∈ Z and β ∈ � the associated weight vector, the weighted Tchebychev norm of z consist for
measuring the distance between z and the utopian objective vector z��. Methods based on this
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technique select feasible objective vectors with minimum weighted distance from z��, i.e., solving
the following problem:

min
z∈Z

{||z�� − z||β∞
}
. (5)

An equivalent problem to 5 called “weighted Tchebychev program” denoted by P(β) (proposed by
Bowman, 1976) is defined by

(P(β))

⎧⎨⎩
min ω

ω ≥ βi(z
��
i − zi(x)), 1 ≤ i ≤ p

x ∈ D,

(6)

where

βi = 1
z��

i − zi

[ p∑
i=1

1
z��

i − zi

]−1

∀1 ≤ i ≤ p, (7)

with zi = cix, where x is a prefixed vector in D.
We use the utopian vector instead of the ideal objective values in order to avoid dividing by zero

in equation (7). Because the components of the matrix C are assumed integer, z�� = z� + 1. The
following results provide some conditions for characterizing a nondominated solution

Theorem 1 (Steuer, 1986). Let Z be finite and

M = {z ∈ Z | (x, z, ω) is a minimal solution of (P(β)) for some β ∈ �} .

Then there exists a z̄ ∈ M such that z̄ ∈ Z(P).

Theorem 2 (Bowman, 1976). z = Cx̂, x̂ ∈ D is nondominated solution for (P) only if it is a solution
to (P(β)) for some β.

A visual representation of (P(β)) for a particular value of β is shown in Fig. 1. The rectangle
(ABCD) is called isoquant and z is said to be vertex of the isoquant. ABCD represents the optimal
level lines of the Tchebychev norm. z1 and z2 lie on the optimal level lines of the Tchebychev norm.
The solutions z1,z2, and z3 are optimal for P(β) (for some values of β), but z1 is an unsupported
weakly nondominated solution. z2 and z3 are supported nondominated solutions.

Theorem 3 (Bowman, 1976). If Z(P) is uniformly nondominated, then any solution of (P(β)) is
nondominated.

In many practical problems, weakly nondominated solutions are not desirable, the above charac-
terization is not appropriate. In order to overcome this situation, we use the augmented weighted
Tchebychev norm given by

|| z�� − z ||β,ρ
∞ = max

i=1,...,p

{
βi | z��

i − zi |
} + ρ

p∑
i=1

(z��
i − zi), (8)

where ρ is a sufficiently small positive scalar.
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Fig. 1. Weak domination and weighted Tchebychev program.

The linear program under this norm is defined as

(
Pρ(β)

)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Min ω + ρ

p∑
i=1

(z�� − zi)

ω ≥ βi(z
��
i − zi(x)), 1 ≤ i ≤ p;

x ∈ D.

(9)

Theoretically, the term ρ
∑p

i=1(z
�� − z̄i) corresponds to the bound for desirable or acceptable trade-

offs. This concept reflects the ratio of change in the values of the objective functions concerning the
increment of one objective function that occurs when the value of some other objective function
decreases. In this sense, moving from one nondominated vector to another results trade-off, this
move indicates a “slight inclination” from some objective function values. The exact value of ρ that
works properly depends on the relative size of the optimal objective function values and cannot be
computed a priori. The principal aim of introducing the augmented weighted Tchebychev program
is to avoid a weakly nondominated solution.

Steuer (1986) has shown that if the ρ is small enough, the augmented weighted Tchebychev
program not only guarantees to return a nondominated objective vector but generates any particular
nondominated objective vector for an appropriate β ∈ �. In practice, precisely in the discrete case,
too small values of ρ can cause numeric difficulties, and therefore the values between 0.001 and 0.01
should normally suffice to avoid the problems related to the weakly nondominated solutions and
the weighted norm.
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Proposition 1. Let β ∈ �, for a small enough fixed ρ > 0, any optimal solution to
(
Pρ(β)

)
is a

nondominated objective vector to problem (P).

Proof. Let ẑ be an optimal solution to
(
Pρ(β)

)
and suppose that ẑ is dominated, then there exists

an objective vector z ∈ Z such that

z ≥ ẑ, (zi ≥ ẑi ∀i ∈ {1, . . . , p} and ∃k ∈ {1, . . . , p} such that zk > ẑk).

For ρ > 0, we have ρ
∑p

i

(
z∗∗

i − zi

)
< ρ

∑p
i

(
z∗∗

i − ẑi

)
and

max
i∈{1,...,p}

(
z∗∗

i − zi

) ≤ max
i∈{1,...,p}

(
z∗∗

i − ẑi

)
.

Thus,

‖z∗∗ − z‖∞ + ρ

p∑
i

(
z∗∗

i − zi

)
< ‖z∗∗ − ẑ‖∞ + ρ

p∑
i

(
z∗∗

i − ẑi

)
,

which is contradictory to ẑ optimal of problem (9). �

Proposition 2. Let ẑ ∈ Z and β̂ ∈ �. If ẑ is nondominated, then ẑ is a unique optimal solution of
Pρ(β̂ ) for a small enough fixed ρ > 0.

Proof. Let ẑ be a nondominated solution to problem (P) and suppose the existence of another
optimal solution z to problem Pρ(β̂ ). Thus,

w + ρ

p∑
i=1

(
z��

i − zi

)
< ŵ + ρ

p∑
i=1

(
z��

i − ẑi

)
.

We also have w > ŵ (see Steuer, 1986), then

w + ρ

p∑
i=1

(
z��

i − zi
)

< ŵ + ρ

p∑
i=1

(
z��

i − ẑi
)

−w < −ŵ,

this implies
∑p

i=1

(
zi − ẑi

)
> 0 ⇒ ∃k ∈ {1, . . . , p} | zk > ẑk, which contradicts that (ẑ) is nondomi-

nated.
�

3. Description of the method

The proposed algorithm provides a global optimal solution of (PE ) without specifying all effi-
cient solutions of (P). Our technique is articulated on two ideas; we characterize a nondominated
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objective vector by solving the augmented weighted Tchebychev program Pρ(β) for a sufficiently
small value ρ and we reduce progressively the admissible domain by adding more constraints.

Initially, the procedure determines the utopian objective vector z��; in the subsequent steps the
relaxed problem (PR) is being solved, an optimal solution x is obtained on which the upper bound
of the main criterion is updated and its objective vector z = Cx is referred to as the vertex of the
isoquant z < z�. For small enough value of ρ > 0, the augmented weighted Tchebychev program
Pρ(β) is solved in order to find the nondominated vector ẑ that is closest to the utopian objective
vector z��, in the direction determined by z�� and z. Given that, in the decision space, many efficient
solutions may have the same outcome ẑ, another program is required to find an equivalent efficient
solution improving the main objective. A new efficient solution is then generated and added to the
current list where the lower bound of φ is evaluated. New constraints on the feasible set D of the
relaxed problem (PR) are imposed, without considering whether efficient solutions already generated
or any other feasible solutions using dominated objectives vectors. The algorithm terminates when
the current feasible space becomes empty or the lower bound coincides with the upper bound.

Assuming that all coefficients of matrix C are integers, at iteration k, the feasible set D is reduced
gradually by eliminating all dominated solutions by Cx̂k (see Sylva and Crema, 2004, 2007). The
resolution of the following problem enables us to perform this elimination:

(
Pk

R

) ≡ max

{
dx, x ∈ D −

k⋃
s=1

Ds

}

{xs; s = 1, . . . , k − 1} are solutions of (P) obtained at iterations 1, 2, . . . , k − 1 respectively. Where
Ds = {x, x ∈ Zn+,Cx ≤ Cxs} and {Cxs}k

s=1 is a subset of nondominated criteria vectors for problem
(P).

D − ⋃k
s=1 Ds

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cix ≥ (cixs + 1)ys
i + Mi(1 − ys

i ), i = 1, 2, . . . , p; s = 1, 2, . . . , k;
p∑

i=1

ys
i ≥ 1; s = 1, 2, . . . , k

ys
i ∈ {0, 1} i = 1, 2, . . . , p; s = 1, 2, . . . , k;

x ∈ D

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(10)

where Mi is a lower bound for any feasible value of the ith objective function. The associate variables
ys

i , i = 1, . . . , p, of x̂s and additional constraints are added to impose an improvement on at least
one objective function. Note that when ys

i = 0, the constraint is not restrictive and when ys
i = 1, a

strict improvement is forced in the ith objective function evaluated at x̂s.

Proposition 3 (Sylva and Crema, 2004). Let x̂1, x̂2, . . . , x̂k be efficient solutions to problem (P) and
Ds = {x | x ∈ Zn+,Cx ≤ Cx̂s}. Let x̂∗ be an efficient solution to the multiple objective integer problem
(Pk) ≡ “ max ”{Cx, x ∈ D − ⋃k

s=1 Ds}. Then x̂∗ is an efficient solution to problem (P).

The proof is detailed in Sylva and Crema (2004). �
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3.1. The algorithm

The technical description of the method is given by

Algorithm 1. Optimizing a linear function over the integer efficient set

Input
↓ A(m×n): matrix of constraints
↓ b(m×1): RHS vector
↓ d(1×n): main criterion vector
↓ C(p×n): matrix of criteria
Output
↑ xopt: optimal solution of the problem (PE )

↑ φopt: optimal value of the main criterion φ

Initialization
for i=1 to p do

solve z�
i = max{cix, x ∈ D}; where z��

i = z�
i + 1 and set the lower bounds Mi := min{cix, x ∈ D}

end for
φsup := +∞ and φinf := −∞: upper and lower bounds of φ function; k = 1,
E1 := ∅; D := D; end := f alse
while end = f alse do

Solve (Pk
R) ≡ max{dx, x ∈ D}

if (Pk
R) is unfeasible or φinf ≥ φsup then

xopt an optimal solution of (PE ); end := true; Terminate
else

Let xk be an optimal solution of (Pk
R)

Let φsup = dxk, compute the weighted vector βk of zk = Cxk

Let (x̂k, ẑk) be an optimal solution of Pρ (βk)

if dx̂k = φsup then
xopt = x̂k; φopt = φsup; end := true; Terminate

else
Solve Q(ẑk) ≡ max{dx | x ∈ D,Cx = ẑk}
Let x̄k be an optimal solution of Q(ẑk)

if dx̄k > φinf then
xopt := x̄k, φinf := dx̄k and φopt := φinf ; let Ek+1 = Ek ∪ {x̄k},
k = k + 1 and D := D\ ∪k−1

s=1 Ds; Ds = {x ∈ Zn |Cx ≤ Cx̄s; x̄s ∈ Ek−1}
else

if φinf ≥ φsup then
xopt is an optimal solution of (PE ) and φopt the optimal value of φ; end := true : Terminate

else
xopt := x̄k, φinf := dx̄k and φopt := φinf ; let Ek+1 = Ek ∪ {x̄k},
k = k + 1 and D := D\⋃k−1

s=1 Ds; Ds = {
x ∈ Zn |Cx ≤ Cx̄s; x̄s ∈ Ek−1

}
end if

end if
end if

end if
end while
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Proposition 4. The algorithm above converges in a finite number of iterations.

Proof. Since D is a finite bounded set, the number of efficient solutions |E (P)| is finite. At each
iteration of the algorithm, a new improved efficient solution is generated and the admissible region
is being reduced there until infeasibility. Thus, the procedure converges to the optimal solution of
(PE ) in a finite number of iterations. �

3.2. A didactic example

Consider the following MOILP problem:

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

“ max ” z1 = x1 + 3x2
“ max ” z2 = −3x1 − x2

D

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2x1 + 5x2 ≤ 23
4x1 + x2 ≤ 31

x1 − x2 ≤ 4
−x1 − 3x2 ≤ −8

−3x1 − x2 ≤ −8
x1, x2 ∈ Z∗+

(11)

and the main problem

(PE ) ≡ max{φ = x1 − 4x2 | (x1 x2)
′ ∈ E (P)}.

The relaxed problem (PR) is given by

(PR) ≡ max{φ = x1 − 4x2 | (x1 x2)
′ ∈ D}.

We can use one of the algorithms developed in Sylva and Crema (2004) to find the efficient set
E (P). This example contains six unsupported efficient solutions out of eight efficient solutions (see
Fig. 2). For this example, the parameter ρ has been fixed at 0.004.

Step 0 Initialization.

� Ideal point z� = (27 − 8)′; z�� = (28 − 7)′; the lower bounds of the objective functions are
M1 = 0, M2 = −25;

� φinf := −∞, φsup := +∞, k = 1, E (P)1 := ∅ and end := f alse.

First iteration
We solve the relaxed problem P1

R ≡ max{φ | x ∈ D}.
An optimal solution is x1 = (5 1)′. Let z1 = Cx1 = (8 − 16)′ be its image in the outcome

space criteria, φsup = dx1 = 1 and φinf � φsup. We compute the weighted vector β1 of z1, β1 =
(0.3103, 0.6897).

C© 2012 The Authors.
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Fig. 2. Decision and outcome space.

Fig. 3. Second iteration.

We solve the generalized Tchebychev program Pρ(β1), which is defined as follows:

Pρ(β1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min ω − 0.004(−2x1 + 2x2)

ω ≥ 0.3103(28 − x1 − 3x2)

ω ≥ 0.6897(−7 + 3x1 + x2)

x1, x2 ∈ D
ω ≥ 0.

(12)

The solution ẑ1 = (17 − 11)′ is a nondominated point with minimal weighted Tchebychev dis-
tance, we obtain x̂1 = (2 5)′ and φ(x̂1) = −18 �= φsup. We solve Q(ẑ1) ≡ max{dx,Cx = ẑ1, x ∈ D}.
x̄1 = (2 5)′ = x̂1; φinf = −18 �≥ φsup = 1; and E (P)2 = {x̄1}.

The second iteration is shown in Fig. 3 and the remaining iterations (for k ≥ 2) are summarized
in Table 1 and represented in Fig. 4. (xopt, φopt) = ((4 5)′, −16) is the optimal solution that is
obtained in the fourth iteration.

C© 2012 The Authors.
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Table 1
The obtained results at each iteration(

PR

) (
P

ρ

(
βk

) ) (
Q(ẑk)

)
φinf ≥ φsup OPT. SOL.

xk x̂k xk or xopt

Iteration k zk Value of βk
i ẑk zk (PR) is unfeasible φopt

1 (5 1)′ 0.3103 (2 5)′ (2 5)′ False (2 5)′

(8 − 16)′ 0.6897 (17 − 11)′ (17 − 11)′ −18
2 (2 2)′ 0.0476 (1 5)′ (1 5)′ False (2 5)′

(8 − 8)′ 0.9524 (16 − 8)′ (16 − 8)′ −18
3 (6 4)′ 0.6000 (4 6)′ (4 6)′ False (2 5)′

(18 − 22)′ 0.4000 (22 − 18)′ (22 − 18)′ −18
4 (4 5)′ 0.5263 (4 5)′ (4 5)′ True (4 5)′

(19 − 17)′ 0.4737 (19 − 17)′ (19 − 17)′ −16

Fig. 4. List of efficient/nondominated solutions.

4. Computational results

The algorithm described above was implemented in the MATLAB environment and run on a PC (Intel
Pentium 2.66 GHz processor). We use the CPLEX 12.2 library for solving linear and integer linear
programming problems. The main feature of the algorithm lies in the resolution of two specific
integer linear programs—the relaxed problem and the augmented weighted Tchebychev program.
For their resolution, branch and bound technique is used.

The algorithm was tested with random MOILP problems generated from discrete uniform dis-
tribution. The components of the matrices A, C, and the vector b were drawn in the ranges [1, 30],
[−20, 20], and [50, 150], respectively. The vector d is generated in the same way as C. To avoid infea-
sibility, all the constraints of each problem are of kind “ ≤ .” Furthermore, since all the coefficients
of A and b are positive, the boundedness of the feasible region is assured. The number of objective
functions p takes the values 3, 5, and 8. A total of 870 problems are grouped according to the
number of variables, constraints, and objective functions into 87 categories; in each category, 10
instances are solved.
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Table 2
Computational results

p p = 3 p = 5 p = 8

m × n CPU (Sec.) Iter CPU (Sec.) Iter CPU (Sec.) Iter

10 × 10 0.38 2 0.45 1 0.59 2
[0.26, 0.54] [1, 3] [0.36, 0.64] [1, 3] [0.54, 1.13] [1, 5]

10 × 15 0.67 2.5 0.49 1 0.70 1
[0.32, 1.76] [1, 7] [0.46, 1.07] [1, 4] [0.64, 0.82] [1, 2]

15 × 15 0.36 1 0.49 1 0.63 1
[0.28, 0.70] [1, 4] [0.42, 0.67] [1, 3] [0.05, 14.86] [1, 5]

20 × 15 0.57 3.5 0.4715 1 0.67 1
[0.28, 1.07] [1, 5] [0.39, 0.79] [1, 3] [0.60, 0.97] [1, 1]

25 × 15 0.42 2 0.50 1 0.65 1
[0.30, 0.56] [1, 3] [0.40, 0.71] [1, 3] [0.58, 1.10] [1, 2]

25 × 25 0.48 2 0.63 1.5 0.94 1
[0.31, 0.69] [1, 3] [0.46, 1.62] [1, 5] [0.71, 1.93] [1, 8]

35 × 25 0.53 2 0.55 1 0.77 1
[0.37, 1.31] [2, 5] [0.47, 1.06] [1, 4] [0.61, 4.15] [1, 10]

35 × 30 0.66 3 0.58 1 0.92 1
[0.40, 2.47] [1, 6] [0.47, 1.27] [1, 3] [0.70, 3.02] [1, 13]

40 × 30 0.56 2 0.82 2 0.85 1
[0.40, 0.85] [1, 4] [0.50, 2.35] [2, 7] [0.71, 2.38] [1, 3]

40 × 40 0.88 3 0.92 2 1.1952 1.5
[0.39, 2.64] [1, 6] [0.54, 1.80] [1, 4] [0.81, 2.60] [1, 4]

50 × 50 0.91 3 0.86 2 1.12 1
[0.60, 1.54] [1, 5] [0.56, 1.68] [1, 5] [0.95,2.54] [1, 3]

50 × 60 1.01 2.5 2.00 3.5 2.04 1
[0.57, 5.38] [1,7] [0.96, 3.52] [1, 5] [1.21, 3.61] [1, 3]

60 × 60 1.07 2.5 2.13 2 1.85 1
[0.49, 3.47] [1, 7] [0.70, 4.02] [1, 5] [1.04, 3.45] [1, 3]

70 × 60 4.43 5.5 5.07 5 3.50 1.5
[1.26, 11.41] [1, 8] [2.33, 8.67] [2, 7] [1.97, 8.53] [1, 5]

70 × 80 2.71 3 2.83 3.5 2.83 1
[1.26, 11.41] [1, 8] [2.33, 8.67] [2, 7] [1.97, 8.53] [1, 5]

80 × 80 5.60 4.5 8.39 4.5 4.65 2
[4.06, 16.25] [3, 7] [1.29, 29.82] [1, 9] [3.23, 9.10] [1, 5]

80 × 90 1.40 1 2.33 1 3.29 1
[0.93, 10.24] [1, 5] [1.79, 19.84] [1, 7] [2.79, 14.95] [1, 5]

80 × 100 1.64 4 2.66 1 6.62 2
[1.12, 107.30] [1, 15] [1.70, 167.83] [1, 12] [4.80, 17.61] [1, 6]

The results reported in Tables 2 and 3—median CPU time (in seconds), required iterations, and
the minimum and maximum values of each measure—show that the proposed algorithm for small
and medium dimensions works efficiently; in terms of number of iterations (median of the number
of iteration < 6) and execution time (median CPU time < 11 seconds). For higher dimensions, the
resolution of such problems becomes difficult due to the factors, such as multiple objective and
discrete nature.
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Table 3
Computational results

p p = 3 p = 5 p = 8

m × n CPU (Sec.) Iter CPU (Sec.) Iter CPU (Sec.) Iter

100 × 100 8.67 4 9.33 3.5 1.45 1
[4.21, 21.51] [1, 7] [1.37, 143.30] [1, 13] [1.33, 14.18] [1, 10]

100 × 120 2.04 4 2.18 2.5 2.2659 1
[1.00, 2.74] [1, 5] [1.34, 2.83] [1, 3] [1.89, 4.29] [1, 4]

120 × 120 2.02 2.5 2.0787 2 2.43 1
[1.00, 3.78] [1, 6] [1.45, 4.36] [1, 4] [2.12, 40.11] [1, 32]

130 × 140 3.2147 2 3.33 2 3.84 1
[1.41, 6.56] [1, 5] [1.99, 12.58] [1, 5] [2.71, 22.43] [1, 11]

140 × 150 3.80 2 2.87 1 3.52 1
[1.62,7.37] [1, 5] [2.24, 18.22] [1, 7] [3.12, 26.93] [1, 3]

150 × 160 4.57 3.5 4.42 2 4.22 1
[2.92, 9.03] [1, 5] [2.76, 13.51] [1, 5] [3.35, 5.48] [1, 2]

160 × 170 5.41 2.5 5.92 2 4.51 1
[3.27, 11.09] [2, 6] [3.31, 10.90] [1, 5] [4.20, 7.33] [1, 2]

170 × 180 6.72 3 5.97 2 5.20 1
[2.65, 15.30] [1, 6] [3.54, 9.90] [1, 3] [4.74, 12.36] [1, 4]

180 × 200 5.20 2.5 9.04 3 6.28 1
[2.97, 10.94] [1, 5] [4.28, 33.63] [1, 7] [5.83, 49.08] [1, 14]

200 × 200 7.77 3 7.24 2 9.35 2
[5.70, 11.68] [2, 5] [4.64, 10.24] [1, 2] [6.42, 12.58] [1, 3]

200 × 220 9.66 3 8.99 2 10.54 2
[4.41, 18.34] [1, 5] [5.67, 15.83] [1, 4] [7.62, 11.72] [1, 2]

5. Conclusion

In this paper, we presented an exact algorithm for optimizing a linear function on the efficient
set of an MOILP. We achieve this objective by combining two ideas: one consists of solving
the augmented weighted Tchebychev program in the outcome space criteria to characterize non-
dominated objective solutions, a second stage of optimization is required to find an efficient so-
lution that improves the main objective. The second idea is a process of added cuts for elimi-
nating the dominated solutions found previously, therefore reducing progressively the admissible
region.

The algorithm was coded using the MATLAB environment utilizing the CPLEX 12.2 library. It
is tested for several problems randomly generated from a discrete uniform distribution and the
results obtained are very encouraging. The computational experience shows that the proposed
algorithm is very efficient in terms of the number of efficient solutions gone over (does not ex-
ceed a median value of 5) with problems of considerable dimensions (200 constraints, 220 vari-
ables, and 8 objectives). For future research, we suggest an updated survey for a comparison
between several methods and for the study of an expert system and robustness of the developed
algorithms.
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