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Abstract

In this paper, the admissible region of a biobjective knapsack problem is our main interest. Although
the reduction of feasible region has been studied by some authors, yet more investigation has to be done
in order to deeply explore the domain before solving the problem. We propose, however, a new tech-
nique based on extreme supported efficient solutions combined with the dominance relationship between
items’ efficiency. An illustration of the algorithm by a didactic example is given and some experiments
are presented, showing the efficiency of the procedure compared to the previous techniques found in the
literature.
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1. Introduction

The biobjective knapsack problem (BOKP), is an NP-hard combinatorial optimization problem
(cf. Martello and Toth, 1990; Kellerer et al., 2004). An instance of BOKP is characterized by a
set of n items and a knapsack capacity ω, where each item i, i = 1, . . . , n, has a weight wi and a
distinguished profit ck

i according to the objective functions k = 1, 2. Unlike the classical knapsack
problem (KP) that optimizes one objective function, BOKP disposes of two objective functions
to be optimized simultaneously. In this case, the goal of BOKP is to determine a set of objects to
put in a bag, each object having a weight and a profit, the objects should be selected to maximize
two functions without exceeding the capacity ω. Numerous algorithms have been designed to
solve such problem, either based on implicit enumeration methods, such as dynamic programming,
branch and bound, or apply heuristic procedures, especially metaheuristics, to approximate the
set of efficient solutions that its size can grow exponentially with the number of items in the
knapsack.
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This latter is a motivation for exploring the information in the admissible region and finding a
simple technique that reduces as much as possible the admissible domain.

Mathematically, BOKP can be stated as follows:

(BOKP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(Zk) =
n∑

i=1

ck
i xi, k = 1, 2

n∑
i=1

wixi ≤ ω

xi ∈ {0, 1}, i = 1, . . . , n,

(1)

where xi is a decision variable, equals to 1 if the item i is in the knapsack and 0 otherwise. For the
rest of the paper and without loss of generality, we assume that

1. All input data ω, ci, and wi, for i = 1, . . . , n, are nonnegative integers.
2.

∑n
i=1 wi > ω, in order to avoid trivial solutions.

2. Related works

BOKP belongs to the well-known knapsack family (cf. Kellerer et al., 2004) that represents a natural
combinatorial optimization problems. BOKP is a more complex variant of the classical NP-hard
single object KP and has a wide range of applications such as capital budgeting (cf. Dyer et al.,
1992) and media selection (cf. Rosenblatt and Sinuany-Stern, 1989).

As far as we know, many papers addressing the BOKP are available, as well as the meth-
ods devoted to the classical single-objective knapsack. Among existing papers tackling the
BOKP, a two-phase resolution search was proposed in Visée et al. (1998). The first phase pro-
vides the set of supported efficient solutions by solving a weighted sum objective functions
and the second phase, with its several versions, is used to find the nonsupported efficient solu-
tions.

Przybylski (2006) generalized the previous method with three objectives using the ranking
method for searching for the efficient solutions in the second phase. In a such method, the sec-
ond phase is very important since the nonsupported efficient solutions are to be found. The
reason why many researchers have spent considerable time to find methods to solve in rea-
sonable CPU-time. Dichotomy, ranking, implicit enumeration, and other techniques are often
used.

The presence of more than one objective makes it more difficult. Moreover, large-scale optimiza-
tion problems are time consuming, therefore reducing their size is necessary.

Dantzig (1957) showed that an optimal solution for the continuous {0, 1}-KP could be ob-
tained as follows: the items are sorted according to their nonincreasing profit to weight ratios,
and these items are included one by one without exceeding the knapsack capacity. In the end,
only one item cannot be completely included in the KP; it is called the break item (critical
item).
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Balas and Zemel (1980) were the first to observe that for random instances, the optimal solution
for the {0, 1}-KP is very similar to the continuous optimal solution. This similarity led to the
introduction of the core concept.

Puchinger et al. (2006) presented the new core concept for the multidimensional KP (MKP),
extending the core concept for the classical one-dimensional {0, 1}-KP.

The nonincreasing order values of the object efficiency (profit-to-weight) are not verified in the
biobjective case. Gomes da Silva et al. (2008) studied the notion of core problems for the MOKP,
but they used a family of weighted sum objective functions, where each function of this family is
considered separately.

Mavrotas et al. (2009) also defined the core concept for the multiobjective MKP and devel-
oped a method based on the core concept for the biobjective case. In the latter works, the main
computing time effort was devoted to search the exact core that depends on the efficient solution
considered.

Jorge et al. (2008) presented new properties aiming to reduce the size of the biobjective BOKP.
Based on a lower bound (LB) and upper bound (UB) on the cardinality of a feasible solution for
the KP introduced by Glover (1965) and on dominance relations in the data space of the MOKP,
they reduced the size of the biobjective instances of the BOKP by fixing a priori about 10% of the
variables, on random instances.

The remainder of the paper is organized as follows. Some basic definitions are presented in
Section 3 followed by Section 4, where our developed algorithm is detailed and illustrated by a
didactic example. In Section 5, some numerical results are given for comparing the results in Jorge
et al. (2008) and the existing other results. Finally, in Section 6, a conclusion and some remarks are
presented.

3. Theoretical presentation of the problem

In a multiobjective framework, the KP can be formulated as:

(MOKP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(Zk) =
n∑

i=1

ck
i xi k = 1, p

n∑
i=1

wixi ≤ ω

xi ∈ {0, 1} i = 1, n,

(2)

where

1. ck
i , wi, and w are positive integers and x = (x1, x2, . . . , xn) in order to avoid trivial solutions, we

suppose in addition that
2. wi ≤ ω, i = 1, n.
3.

∑n
i=1 wi > ω.

C© 2016 The Authors.
International Transactions in Operational Research C© 2016 International Federation of Operational Research Societies



4 M. Daoud and D. Chaabane / Intl. Trans. in Op. Res. 00 (2016) 1–24

Definition 1. A feasible solution x∗ is efficient for (2), if there does not exist any other feasible solution
x such that Zk(x) ≥ Zk(x∗), k = 1, p with at least one strict inequality.

Definition 2. The vector Z(x∗) = (Z1(x∗), Z2(x∗), . . . , Zp(x∗)) is said to be nondominated in the
space of objective functions.

The presence of integer decision variables imposes two incompatible sets of efficient solutions:

� The set SE(MOKP) of supported efficient solutions that are optimal solutions of the parameter-
ized single-objective problem.

� The set NSE(MOKP) = E (MOKP)\SE(MOKP) of nonsupported efficient solutions that can-
not be found by optimization of the parameterized single-objective problem.

Definition 3. An LB and UB on the cardinality of a feasible solution for the unidimensional KP was
introduced by Glover (1965).

These bounds are defined, respectively, as follows:

LB = max

{
s :

s∑
i=1

wi ≤ ω

}
such that wi ≥ wi+1, ∀i ∈ {1, . . . , n − 1} (3)

UB = max

{
s :

s∑
i=1

wi ≤ ω

}
such that wi ≤ wi+1, ∀i ∈ {1, . . . , n − 1}. (4)

Remark 1. LB and UB are independent from objective functions. Gandibleux and Fréville (2000)
generalized their use in the case of multicriteria through the following proposal:

Proposition 1. Let XE be the complete set of efficient solutions of (2). If x ∈ XE , then

LB ≤
n∑

i=1

xi ≤ UB.

Definition 4. Object’s efficiency is defined by the ratio of the profit to the weight denoted by ei = ci
wi

.

Remark 2. The notion of object’s efficiency and efficient solution are completely different.

3.1. Properties of the regular variables (Jorge et al., 2008)

Definition 5. (Regular variables). Let XE be the complete set of efficient solutions of (2).

C0 = {
i ∈ {1, . . . , n} | xi = 0, ∀x ∈ XE

}
C1 = {

i ∈ {1, . . . , n} | xi = 1, ∀x ∈ XE

}
.
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The regular variables are the components that contain the same value as that of all the efficient
solutions.

Data dominance
The data space vectors of the KP :

V = {
vi ∈ Nn × Z

∣∣ vi = (
c1

i , . . . , cp
i , −wi

)
, i ∈ {1, . . . , n}}.

Definition 6. Consider vi, v j ∈ V . A vector vi dominate v j (vi � v j), if and only if (c1
i , . . . , cp

i , −wi) ≥
(c1

j , . . . , cp
j , −wj ) with at least one strict inequality.

Definition 7. Let vi ∈ V . The set of all indices j of vectors v j that are preferred to the vector vi

P(vi) = { j ∈ {1, . . . , n} : v j � vi}
is called the dominant (preferred) set.

Definition 8. Let vi ∈ V . The set of all indices j of vectors v j that are dominated by the vector vi

D(vi) = { j ∈ {1, . . . , n} : vi � v j}
is called the dominated set.

The necessary conditions for regular variable are given in Jorge et al. (2008):

� if |P(vi)| ≥ UB or
∑

j∈P(vi ) wj + wi > w then C
′
0 = C

′
0

⋃{i}.
� if n − |D(vi)| ≤ LB or

∑
j /∈D(vi ) wj < w then C

′
1 = C

′
1

⋃{i}.

C
′
0 and C

′
1 are the regular variables.

The proposed approach is mainly based on the notion of efficiency stated above (see Defi-
nition 4). Let C0 and C1 be the indices set corresponding to the regular variables. Consider
the set with vectors Ei of components ek

i , i = 1, . . . , n; k = 1, . . . , p. Thus E = {Ei ∈ Rn : Ei =
(e1

i , e2
i , . . . , ep

i ), i ∈ {1, . . . , n}}, where ek
i = ck

i
wi

k = 1, . . . , p. The notion of dominance in the set E is
defined in the same classical way by the following definition:

Definition 9. Let Ei, E j ∈ E. A vector Ei dominate E j (Ei � E j), if and only if (e1
i , . . . , ep

i ) ≥
(e1

j , . . . , ep
j ) with at least one strict inequality.

Definition 10. Let Ei ∈ E. The set of all indices j of vectors E j that are preferred to the vector Ei

P(Ei) = { j ∈ {1, . . . , n} : E j � Ei}
is called the preferred set .

C© 2016 The Authors.
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Definition 11. Let Ei ∈ E. The set of all indices j of vectors E j that are dominated by the vector Ei

D(Ei) = { j ∈ {1, . . . , n} : Ei � E j}
is called the dominated set.

4. Description of the algorithm

We briefly describe the different steps of the procedure. The proposed algorithm is articulated on two
procedures, the first one, determines p extreme supported efficient solutions, the second however,
discards some regular variables from the admissible set.

We denote by X 1, X 2, . . . , X p, the extreme supported efficient solutions of the problem MOKP(2)
such that X k = (xk

1, xk
2, . . . , xk

n) k = 1, 2, . . . , p.
We also define the sets J0 and J1 by

J0 = {
j ∈ {1, . . . , n}/x1

j = x2
j = · · · = xp

j = 0
}

(5)

J1 = {
j ∈ {1, . . . , n}/x1

j = x2
j = · · · = xp

j = 1
}

(6)

Without loss of generality, we will consider the BOKP (p = 2).

� To find two extreme supported efficient solutions X 1 and X 2 of BOKP, we propose the following
lexicographic method:

� The lexicographic optimal solution X 1 corresponding to lexmax
(
Z1(x), Z2(x)

)
: initially, we

solve the first objective Z1(x), with parameter set equals to (1, 0), let X 1
opt be an optimal

solution. If it is unique then the optimal solution is efficient and the lexicographic opti-
mal solution X 1 is then set to X 1

opt. Otherwise, if there exists many optimal solutions, then
X 1

opt can be a weakly efficient solution, in this case, to improve the second objective with-
out degrading the first objective, we optimize the second single-objective function Z2(x)

under the constraint Z1(x) = Z1(X 1
opt ). Consider the set of optimal solutions of the lexico-

graphic optimization problem, X 1 is an efficient solution, one of the optimal solutions in
this set.

� The second lexicographic optimal solution X 2 corresponding to lexmax
(
Z2(x), Z1(x)

)
is found

in the same manner.

The indices sets corresponding to the regular variables D0 and D1, are calculated as
follows:

1. For i ∈ J0, the objects that are dominated by at least UB objects “in terms of efficiency”
are grouped at the end; the values of these objects correspond to xi = 0 in all efficient
solutions.

2. For i ∈ J1, the objects that dominate at least n − LB objects “in terms of efficiency”
are grouped at the first; the values of these objects correspond to xi = 1 in all efficient
solutions.

C© 2016 The Authors.
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Table 1
Efficient solutions

i 1 2 3 4 5

X 1 1 1 0 1 0
X 2 1 1 1 0 0
X 3 1 0 0 1 1

Mathematically we write,

D0 = {i ∈ J0/|P(Ei)| ≥ UB} (7)

such that P(Ei) is the preferred set (Definition 10) and UB is the UB on the cardinality of a feasible
solution for BOKP (Definition 3).

D1 = {i ∈ J1/|D(Ei)| ≥ n − LB} (8)

such that D(Ei) is the dominated set (Definition 11) and LB is the LB on the cardinality of a feasible
solution for BOKP (Definition 3).

Generally, the exact values of the thresholds for which we could detect the regular variables
indices sets D0 and D1 cannot be a priori identified, but a good approximation of these values
are UB and n − LB, respectively, it is the reason why sometimes we miss a negligible number of
efficient solutions among an important number of efficient solutions. We tried to remedy such cases
by adding to the threshold values a certain additive value u (detail is given in the last paragraph
of Section 5.5). We give a didactic example where the reduction procedure can miss one efficient
solution:

(BOKP)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(Z1) = 11x1 + 5x2 + 7x3 + 13x4 + 3x5

max(Z2) = 9x1 + 2x2 + 16x3 + 5x4 + 4x5

4x1 + 2x2 + 8x3 + 7x4 + 5x5 ≤ 16

xi ∈ {0, 1}

(9)

An exact method provides the efficient solutions shown in Table 1.
Our procedure reduction detected the regular variables indices D1 = {1} and D0 = {5}. The

resolution of the reduced problem gives two efficient solutions X 1 and X 2, then we miss the third
efficient solution X 3, because its fifth component is equal to 1.

4.1. Technical description

In this section, we give a technical description of our proposed algorithm.

C© 2016 The Authors.
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Algorithm 1: Determine the regular variables indices by the object’s efficiency

4.2. Didactic example

This example shows the advantage of the algorithm 1:

(BOKP)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(Z1) = 11x1 + 4x2 + 5x3 + 1x4 + 7x5 + 13x6 + 4x7 + 3x8

max(Z2) = 9x1 + 8x2 + 2x3 + 2x4 + 16x5 + 5x6 + 9x7 + 4x8

4x1 + 3x2 + 2x3 + 1x4 + 8x5 + 7x6 + 6x7 + 5x8 ≤ 20

xi ∈ {0, 1}

(10)

C© 2016 The Authors.
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Table 2
Efficient solutions

i 1 2 3 4 5 6 7 8

X 1 1 0 1 1 0 1 1 0
X 2 1 1 1 1 1 0 0 0
X 3 1 0 0 1 1 1 0 0

An exact method provides the efficient solutions shown in Table 2. The first, the fourth, and the
eighth columns are the regular variables indices corresponding to C1 = {1, 4} and C0 = {8}.

Applying the method stated in Jorge et al. (2008): We obtain:

� The data vectors :

v1 =
⎛
⎝ 11

9
−4

⎞
⎠ v2 =

⎛
⎝ 4

8
−3

⎞
⎠ v3 =

⎛
⎝ 5

2
−2

⎞
⎠

v4 =
⎛
⎝ 1

2
−1

⎞
⎠ v5 =

⎛
⎝ 7

16
−8

⎞
⎠ v6 =

⎛
⎝ 13

5
−7

⎞
⎠ v7 =

⎛
⎝ 4

9
−6

⎞
⎠ v8 =

⎛
⎝ 3

4
−5

⎞
⎠ .

� The LB = 2 and the UB = 5, respectively.
� P(v8) = {1, 2} and D(v1) = {7, 8} and D(v4) = ∅ and according the properties in Jorge et al.

(2008), we have: |P(v8)| � UB and w1 + w2 + w8 = 13 � w therefore nothing can be said, even if
x8 = 0 in all efficient solutions, also 8 − |D(v1)| = 6 � LB and w1 + w2 + w3 + w4 + w5 + w6 �
w, which does not determine the variable x1, even if x1 = 1 in all the efficient solutions.
The same for the value x4, we cannot determine it by the properties developed (Jorge et al., 2008).

As conclusion, the regular variables indices sets detected in Jorge et al. (2008) is given by C
′
1 = ∅

and C
′
0 = ∅.

Now, we apply the object’s efficiency vectors technique:

E1 =
(

2,75
2,25

)
E2 =

(
1,33
2,66

)
E3 =

(
2,5
1

)

E4 =
(

1
2

)
E5 =

(
0,87

2

)
E6 =

(
1,85
0.71

)
E7 =

(
0,66
1,5

)
E8 =

(
0,6
0,8

)
.

� Two supported efficient solutions are considered:

X 1 = (1, 0, 1, 1, 0, 1, 1, 0) and X 2 = (1, 1, 1, 1, 1, 0, 0, 0).

� The set J0 and J1 are defined by:

J0 = {8} et J1 = {1, 3, 4}.
C© 2016 The Authors.
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The dominated set is: D(E1) = {3, 4, 5, 6, 7, 8}, as |D(E1)| ≥ n − LB then x1 = 1. The dominated
set is D(E3) = {6, 8}, we have |D(E3)| � n − LB therefore nothing can be said about x3. The
dominated set is D(E4) = {5, 7, 8}, as |D(E4)| � n − LB nothing can be concluded about x4. The
dominant set is P(E8) = {1, 2, 3, 4, 5, 7}, we have |P(E8)| ≥ UB thus x8 = 0.

Consequently, the procedure detected some regular variables indices D1 = {1} and D0 = {8} that
could not been detected by Jorge et al. (2008).

5. Numerical experiments

5.1. The detection of sets regular variables

The instances from http://xgandibleux.free.fr/MOCOlib/instances/MOKP/ are used to validate
our proposed algorithm.

The above algorithm, is implemented in the MATLAB environment. All the tests have been
performed by a PC Intel

R©
Pentium

R©
M Processor 2.13 GHz. We use the CPLEX 12.2 library for

solving the KP.
We adopt the following notations :

� 2KPn − r: denotes a BOKP with n items and a ratio of the capacity to the total weights r ∈
10−2 × [11, 91].

� | C | is the number of regular variable indices obtained by an exact method given in the above site.
� | CJ | is the number of regular variable indices given in Jorge et al. (2008).
� | D |=| D0

⋃
D1 | is the number of regular variable indices produced by our algorithm.

� T is the CPU time of our algorithm.

5.2. Results from instances 1A

This folder contains five data files that correspond to five biobjective {0, 1}-unidimensional KPs.
The values (profit vectors and item weights) are uniformly generated. The instances count between
50 and 500 items. The ratio r lies in the range [0.11, 0.92].

From Table 3, the resolution of the instance 2KP500 − 41 gives 70 regular variables.

Table 3
Number of variables fixed to 0 and 1

Instances | C | | CJ | | D0 | | D1 | | D | T (s)

2KP50 − 11 31 10 28 0 28 0.59
2KP50 − 50 20 2 6 2 8 0.71
2KP50 − 92 48 28 1 34 35 0.5
2KP100 − 50 56 10 8 21 29 2.49
2KP500 − 41 Unknown Unknown 60 10 70 6.97

C© 2016 The Authors.
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Fig. 1. The percentage of reduced variables.

The difference between both algorithms in percentage lies in the range 14.58% and 58.06% (see
Fig. 1).

5.3. Results from instances 1B

Thirty data files corresponding to nine biobjective {0, 1}-unidimensional KPs are explored. The
ratio is fixed to 0.5. Three variants A, B, and C, of nine instances are studied, where the profits and
the weights in both first variants are generated from [1, 100] uniform distribution.

1. Class 1B/A, the weights and the profits are uniformly generated in [1, 100] (see Table 4). The
difference in percentage is also significant. It lies in the range 18.52% and 35.56% (see Fig. 2).

Table 4
Number of variables fixed to 0 or 1

Instances | C | | CJ | | D0 | | D1 | | D | T (s)

2KP50 27 11 6 10 16 0.52
2KP100 53 5 5 13 18 0.45
2KP150 83 18 14 24 38 0.95
2KP200 116 17 15 34 49 1.45
2KP250 139 18 15 39 54 2.23
2KP300 173 26 17 54 71 2.54
2KP350 213 31 21 58 79 3.75
2KP400 252 33 28 72 100 4.58
2KP450 270 27 35 88 123 5.47

C© 2016 The Authors.
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Fig. 2. The percentage of reduced variables.

Table 5
Number of variables fixed to 0 and 1

Instances | C | | CJ | | D0 | | D1 | | D | T (s)

2KP50 24 9 3 9 12 0.26
2KP100 51 4 7 14 21 0.52
2KP150 78 9 7 23 30 0.87
2KP200 108 15 11 25 36 1.26
2KP250 145 18 14 38 52 2.03
2KP300 180 32 18 51 69 2.23
2KP350 203 31 25 51 76 3.82
2KP400 249 39 29 64 93 4.87
2KP450 249 31 25 77 102 6.10

2. Class 1B/B created from 1B/A by replacing the second vector of profits by the first one in reverse
order (c2

i = c1
n−i+1, ∀i) (see Table 5). In this category, all the instances produce a clear difference

(see Fig. 3).
3. Class 1B/C, the profit vector components are uniformly generated in the intervals of lengths that

do not exceed 10 % of the problem size ([1, � n
10�]) (see Table 6). This set of instances presents the

same results, all instances produce a clear difference (see Fig. 4).

C© 2016 The Authors.
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Fig. 3. The percentage of reduced variables.

Table 6
Number of variables fixed to 0 and 1

Instances | C | | CJ | | D0 | | D1 | | D | T (s)

2KP50 23 3 3 8 11 0.21
2KP100 61 11 11 17 28 0.63
2KP150 81 10 13 27 40 0.86
2KP200 105 19 10 28 38 1.45
2KP250 136 15 11 43 54 2.03
2KP300 186 37 28 46 74 2.86
2KP350 193 29 10 54 64 3.82
2KP400 239 47 41 71 112 4.77
2KP450 291 27 28 87 115 5.96

The above results lead us to the following conclusions:

1. A great similarity is observed between the class 1B/A and 1B/B.
2. D ⊂ C, except the first instance for class 1B/C; at one side, our procedure produces the index

31 ∈ D1 but 31 /∈ C1. On the other side, all efficient solutions show that there exist only one
efficient solution among 79 solutions, its component x31 is equal to zero while all other efficient
solutions their component x31 is equal to 1; therefore, when solving the problem in our reduced
feasible solution set, one can miss one solution among 79 efficient solutions.

3. |CJ | < |D| < |C|, the difference between |D| and |CJ | is significant.

C© 2016 The Authors.
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Fig. 4. The percentage of reduced variables.

4. The mean running time is acceptable, between 0.21 and 6.10 seconds.
5. For all instances, the size of problem is limited at 450.

5.4. Results from instances 1C

There are 38 data files corresponding to three series of biobjective {0, 1}-unidimensional KPs;
uncorrelated denoted by UNCOR, weakly correlated denoted by WEAK, and strongly correlated
named STRONG. The ratio is also fixed to 0.5.

1. UNCOR: the file is composed of 20 instances of 50 variables. The profits and the weights
are uniformly generated; 10 of them lie in the range [1, 300] and the others are in the range
[1, 1000] (see Table 7). Concerning this set of instances, the same results are found (see
Fig. 5).

2. WEAK: Nine correlated instances of size between 50 and 450. The weights are uniformly gen-
erated in [1,1000]. The second vector of profits takes its values in range [111,1000]. The first
vector of profits is randomly chosen in [c2 − 100, c2 + 100] (see Table 8). Concerning the weak
correlated instances, the proposed algorithm gives more then 50% regular variables, which means
more than half of the dimension of the problem is reduced (see Fig. 6).

3. STRONG : Nine strongly correlated instances of size between 50 and 450 are used. The weights
are uniformly generated in [1, 1000]. The second vector of profits takes its values in the range
[1, 1000]. The first vector of profits is set equal to wj + 100 (see Table 9). From the sixth entry
(2KP350 −>2KP450), for strongly correlated instance, we note that our approach produces
regular variables but the other method (Jorge et al., 2008) does not (see Fig. 7).

C© 2016 The Authors.
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Table 7
Number of variables fixed to 0 and 1

Instances | C | | CJ | | D0 | | D1 | | D | T (s)

2KP50 19 1 3 6 9 0.61
2KP50 25 5 7 6 13 0.51
2KP50 29 6 5 9 14 0.43
2KP50 28 4 5 6 11 0.57
2KP50 23 2 2 9 11 0.60
2KP50 26 4 5 7 12 0.43
2KP50 25 3 1 8 9 0.61
2KP50 27 5 6 8 14 0.76
2KP50 31 8 4 10 14 0.76
2KP50 27 6 5 8 13 0.55
2KP50 24 4 3 8 11 0.55
2KP50 30 9 5 9 14 0.49
2KP50 30 9 3 8 11 0.57
2KP50 25 5 6 5 11 0.55
2KP50 22 7 4 10 14 0.52
2KP50 25 3 6 6 12 0.42
2KP50 21 5 2 8 10 0.59
2KP50 33 12 8 10 18 0.60
2KP50 28 2 3 5 8 0.53
2KP50 22 4 2 10 12 0.77

Fig. 5. The percentage of reduced variables.
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Table 8
Number of variables fixed to 0 and 1

Instances | C | | CJ | | D0 | | D1 | | D | T (s)

2KP50 46 26 14 12 26 0.58
2KP100 100 40 28 27 55 1.17
2KP150 139 51 40 39 79 1.42
2KP200 197 64 55 53 108 1.97
2KP250 237 77 65 66 131 2.77
2KP300 281 94 79 79 158 3.88
2KP350 328 116 92 92 184 4.42
2KP400 373 133 104 107 211 6.69
2KP450 420 146 118 117 235 6.50

Finally, the results show that:

1. D ⊂ C, except the UNCOR class for the 11th and 13th instances; there exists only one index
39, 19 ∈ D1, and D0 but 39, 19 /∈ C1, and C0, respectively.
For example, the index 39 ∈ D1 but 39 /∈ C1: the component x39 = 1 appears in the majority of
efficient solutions (x39 = 0 appear in one solution among all efficient solutions).

2. |CJ | < |D| < |C|.
3. For the instances from type UNCOR and the instances WEAK, the mean running time is

acceptable; between 0.42 and 0.77 seconds.
4. For the instances from type STRONG, our approach detects the regular variables set D for all

instances, whereas the method in Jorge et al. (2008) does not detect any regular variable. The
mean of execution time is acceptable 0.37 until 5.92.

Fig. 6. The percentage of reduced variables.
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Table 9
Number of variables fixed to 0 and 1

Instances | C | | CJ | | D0 | | D1 | | D | T (s)

2KP50 29 – 4 10 14 0.37
2KP100 69 – 8 21 29 0.75
2KP150 100 – 12 33 45 1.20
2KP200 140 – 16 44 60 1.87
2KP250 180 – 19 53 19 2.09
2KP300 212 – 23 63 86 3.27
2KP350 – – 31 76 107 3.53
2KP400 – – 34 85 119 4.87
2KP450 – – 40 92 132 5.92

Fig. 7. The percentage of reduced variables.

5.5. The impact of the regular variables for the running times of the problem resolution

We used an exact method (Jahanshahloo et al., 2005) that optimizes the sum of both objective
functions :

Z1(x) + Z2(x); for each obtained optimal solution x∗
q, the admissible domain is reduced by

adding three constraints:

Zk(x) > Zk(x∗
q

) − Mtkq, k = 1, 2,

t1q + t2q ≤ 1

C© 2016 The Authors.
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and two (0, 1) variables t1q and t2q, the method provides at least one efficient solution. We note that
solving the BOKP using this method (see Jahanshahloo et al., 2005) needs more computational
effort, especially if the problem has an important number of efficient solutions. For this reason,
the size of some instances is limited. The method is described as follows (see Jahanshahloo et al.,
2005).

Consider the following BOKP:

(BOKP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(Zk) =
n∑

i=1

ck
i xi, k = 1, 2

n∑
i=1

wixi ≤ ω

xi ∈ {0, 1}, i = 1, . . . , n

(11)

For solving the problem (BOKP), according to Jahanshahloo et al. (2005), we first consider the
following two single-objective KPs KPk(k = 1, 2):

(KPk)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max Zk(x)

n∑
i=1

wixi ≤ ω

xi ∈ {0, 1}, i = 1, . . . , n

(12)

Let G0 = {x∗
i1
, x∗

i2
, . . . , x∗

i
α
} be the set of the optimal solution of problem (KPk) and L0 =

{i1, i2, . . . , iα}.

� If the set G0 is empty, then we solve the problem defined by

(SKP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
2∑

k=1

Zk(x)

n∑
i=1

wixi ≤ ω

xi ∈ {0, 1}, i = 1, . . . , n

(13)

Suppose that G0 = {x∗
i1
, x∗

i2
, . . . , x∗

i
β
} the set of the optimal solution of problem (SKP) stated in

Equation (13) and L0 = {i1, i2, . . . , iβ}. Note that x∗
q ∈ G0 with q ∈ L0 is an efficient solutions of

the problem (BOKP) defined in Equation (11).
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� If the set G0 is not empty, we determine all optimal solutions of the mono-objective defined by

(SKP1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
2∑

k=1

Zk(x)

Zk(x) > Zk(x∗
q

) − Mtkq, k = 1, 2, q ∈ L0

n∑
i=1

wixi ≤ ω

t1q + t2q ≤ 1; t1q, t2q ∈ {0, 1}
xi ∈ {0, 1}, i = 1, . . . , n

(14)

In case tkq = 1(k = 1, 2), the constraint Zk(x) > Zk(x∗
q) − Mtkq is redundant, otherwise, it is

not. The constraint t1q + t2q ≤ 1(q ∈ L0) implies that at least one of the constraints Zk(x) >

Zk(x∗
q) − Mtkq, k = 1, 2 is not redundant (we can choose max1≤k≤2{

∑n
i=1 ck

i } as an LB for M).
Now, we suppose that A = {x∗

i j+1
, x∗

i j+2
, . . . , x∗

i j+l
} is the set of optimal solutions of the problem

(SKP1) stated in Equation (14), where j = α or β.

� If A is empty, then G0 is the efficient set of the problem (BOKP).
� Else, the set of optimal solutions is G1 = G0 ∪ A.

The other efficient solutions of the problem (BOKP), are obtained as follows : for each x∗
q ∈ A,

we add three constraints to the problem (SKP1):

Zk(x) > Zk(x∗
q

) − Mtkq, k = 1, 2, t1q + t2q ≤ 1.

Moreover, we add two (0, 1) variables to the problem (SKP1), t1q and t2q. Consequently, the
problem (SKP1) can be written as:

(SKP2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
2∑

k=1

Zk(x)

Zk(x) > Zk(x∗
q

) − Mtkq, k = 1, 2,

n∑
i=1

wixi ≤ ω

t1q + t2q ≤ 1 q = i1, i2, . . . , i j+1, i j+2, . . . , i j+l ( j = α or β).

xi ∈ {0, 1}, i = 1, . . . , n

(15)

This process continues until the problem (SKP2) stated in Equation (15) becomes infeasible.
Finally, we conclude by some theorems used in the method (Jahanshahloo et al., 2005):
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Theorem 1. If Gl = {x∗
1l
, x∗

2l
, . . . , x∗

fl
} is the set of optimal solutions of lth problem obtained from the

problem (KPk) equation, then at least one of these optimal solutions is an efficient solution for problem
(BOKP).

Theorem 2. An optimal solution of the problem (SKP) is an efficient solution for problem (BOKP).

The CPU time TE of the exact method (Jahanshahloo et al., 2005) is compared to the CPU time
TR of our reduction strategy implemented within the same exact method. We adopt the following
notations:

� 2KPn − r : denotes a BOKP with n items and a ratio of the capacity to the total weights r ∈
10−2 × [11, 91].

� | D |=| D0
⋃

D1 | is the number of regular variable indices produced by our reduction strategy.
� NR denotes the size of the reduced problem calculated as follows NR = n− | D |.
� TE and ME are, respectively, the CPU time and the number of efficient solutions of developed

exact method (Jahanshahloo et al., 2005).
� TR and MR are, respectively, the CPU time and the number of efficient solutions of our reduction

strategy adapted in the exact method (Jahanshahloo et al., 2005).
� T = TR

TE
× 100% is the percentage of the running times of reduction strategy adapted in the exact

method TR and the running times of the same exact method TE .

1. Results from instances type 1A
We note that, for the instances 1A, the running time concerning our reduction method is better
than the running time of the exact method Jahanshahloo et al. (2005). When the problem has at
most two efficient solutions, the running time is the same for both methods (e.g., 2KP50 − 92).

When the size of the problem is slightly large, (e.g., 2KP100 − 50), full enumeration is used in
the iterative exact method even if the reduction size was made (n = 100 −> NR = 71) . For the
latter reason, the line of these instances is empty (∗) (see Table 10).

2. Results from instances type 1C
We note that for all instances of UNCOR type, the running time for our reduction method is
faster than the exact method (Jahanshahloo et al., 2005). The percentage of the running times T
is significant between 65.30% until 97.66% (see Table 11).

3. Results from instances type WEAK
We note that for instances of WEAK type, the running time for our reduction method is faster
than the exact method (Jahanshahloo et al., 2005) for the majority of instances except the

Table 10
The difference time between the exact (Jahanshahloo et al., 2005) and reduction methods

Exact method [6] Our reduction method

Instances ME TE | D | NR MR TR T %

2KP50 − 11 43 85.47 28 22 42 51.30 60.02
2KP50 − 50 51 408.70 8 42 51 399.35 97.71
2KP50 − 92 2 0.48 35 15 2 0.48 100
2KP100 − 50 * * 29 71 * * *
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Table 11
The difference time between exact and reduction methods for UNCOR

Exact method [6] Our reduction method

Instances ME TE (s) | D | NR MR TR(s) T %

2KP50 59 425.40 9 41 59 399.03 93.80
2KP50 37 106.85 13 37 37 93.25 80.64
2KP50 39 115.63 14 36 39 112.93 97.66
2KP50 34 62.74 11 39 34 54.39 86.69
2KP50 40 186.25 11 39 40 127.86 68.64
2KP50 40 107.75 12 38 40 88.84 82.45
2KP50 38 119.76 9 41 38 103.14 86.12
2KP50 30 92.50 14 36 30 78.15 84.48
2KP50 33 50.10 14 36 33 37.09 74.03
2KP50 44 140.99 13 37 44 133.16 94.44
2KP50 56 353.51 11 39 56 336.58 95.21
2KP50 49 193.05 14 36 49 126.07 65.30
2KP50 27 21.93 11 39 26 18.44 84.08
2KP50 47 182.67 11 39 47 136.94 74.96
2KP50 65 766.56 14 36 65 678.10 88.46
2KP50 45 153.90 12 38 45 122.49 79.59
2KP50 62 679.80 10 40 62 460.92 67.80
2KP50 19 13.94 18 32 19 8.59 61.62
2KP50 34 63.52 8 42 34 44.66 70.30
2KP50 80 1736.94 12 38 80 1337.3 76.99

Table 12
The difference time between exact and reduction methods for WEAK correlated

Exact method [6] Our reduction method

Instances ME TE (s) | D | NR MR TR(s) T %

2KP50 3 8.79 26 24 2 0.58 6.59
2KP100 1 1.17 55 45 1 1.17 100
2KP150 8 5.43 79 71 8 4.00 73.66
2KP200 2 1.97 108 92 2 1.97 100
2KP250 7 10.98 122 118 7 9.97 90.80
2KP300 16 81.53 158 142 16 59.07 72.45
2KP350 25 193.87 184 166 25 106.65 55.01
2KP400 25 344.19 211 189 24 276.46 80.32
2KP450 – – 235 215 35 873.71 –

instances 2KP100 and 2KP200, which the problem has, respectively, one and two efficient
solutions. For the last instances 2KP450, our reduction method gives the set of efficient solutions,
but the exact method cannot because the academic version (cplex12.6) is limited (see Table 12).

In conclusion, Tables 2–12, show the impact of the reduction strategy time on global running
time for solving the BOKP. The running time of the reduction strategy adapted in the exact
method (Jahanshahloo et al., 2005) is compared with that of the same exact method without
taking into account the reduction strategy, the results show the significant difference of CPU-time.
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We note that, for all the instances, the sign “ − ” signifies that the method does not provides a
results, and the sign “ ∗ ” signifies that the method provides a full enumeration and therefore no
results.

To analyze the performance of the method, we use the instances in the above section corresponding
to the classes 1A, 1B, 1C.

� The reduction algorithm is particularly efficient for all instances of type 1A,1B/A, 1B/B, WEAK,
and STRONG.

� It should be noted that for some instances where the data depend on the size of the problem, for
example, some instances of type 1B/C and UNCOR, the set of regular variables indices D0 and
D1 are included in C0 and C1 (respectively), but there exist exactly one index included in D0(resp
D1) not in C0(resp C1), which can cause a negligible miss of efficient solutions compared to an
important set of efficient solutions.

For this type of instances, we proceed as follows:
Based on dominance Pareto relationships on the object efficiency; we sort increasingly the objects

according to |P(Ei)| (or we sort decreasingly the objects according to |D(Ei)|) as follows:

1. For i ∈ J0, the objects that are dominated by a great number of objects (more than UB objects)
(in terms of object’s efficiency) are grouped at the end; where the ratios Ei, i = 1, . . . , n are very
small (objects of lower efficiency) and the values of these objects corresponding to xi = 0 in all
efficient solutions.

2. For i ∈ J1, the objects that dominate a great number of objects (more than n − LB objects) (in
terms of object’s efficiency) are grouped at the beginning, where the ratios Ei, i = 1, . . . , n are
important (objects of higher efficiency) and the values of these objects corresponding to xi = 1
in all efficient solutions.

To ensure the great number, a certain value u is added in two latter cases as follows.
The sets D0 and D1 are calculated through:

D0 = {
i ∈ J0/|P(Ei)| ≥ UB + u

}
(16)

D1 = {
i ∈ J1/|D(Ei)| ≥ n − LB + u

}
(17)

where, u is an additional positive integer number.

Proposition 2. u ∈ [0, min(LB − 1, n − UB − 1)].

Proof. Ei can be dominated by E j (in the sense of Pareto) a maximum n − 1 object and minimum
0 object such that

0 ≤ |P(Ei)| ≤ n − 1, and from (16) we have |P(Ei)| ≥ UB + u.
Thus, UB + u ≤ |P(Ei)| ≤ n − 1 �⇒ UB + u ≤ n − 1 then

u ≤ n − UB − 1. (18)

Ei dominates E j (in the sense of Pareto) maximum n − 1 object and minimum 0 object such that
0 ≤ |D(Ei)| ≤ n − 1 and from (17) we have |D(Ei)| ≥ n − LB + u.
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Thus, n − LB + u ≤ |D(Ei)| ≤ n − 1 �⇒ n − LB + u ≤ n − 1 then

u ≤ LB − 1 (19)

By (18) and (19), we have

u ≤ min(LB − 1, n − UB − 1)

then

u ∈ [0, min(LB − 1, n − UB − 1)]

6. Conclusions

In this paper, a new algorithm reducing the size of biobjective {0, 1}-KP is presented. This reduction
is based on data information concerning the object’s efficiency to fix some variables to 0 or 1 of the
problem before its resolution, this pretreatment is based on the research for two extreme supported
efficient solutions and a relation of the object’s efficiency dominance in the sense of Pareto.

The analysis of the previous section shows that the research space of regular variables and the
problem’s size is considerably reduced in a reasonable calculation time and the results obtained
are very interesting compared to the results in Jorge et al. (2008). This pretreatment however, is
acceptable in calculation time for all instances, and in addition, the dimension of the research space
is halved or reduced more (e.g., the instances “STRONG”).

We also note that for all the studied instances, the condition using LB and UB in Jorge et al. (2008)
fixes almost none of the regular variables, but the developed method using LB and UB determines
many regular variables and it is interesting to determine the exact value of additional number u for
some instances of type “1B/C” and “UNCOR.”

For problems with large size, we propose incorporating this pretreatment before or in parallel
with a metaheuristics and search only in the reduced area. Adding such algorithm can give more
results with cooperative procedures as well.

Extending this study to MKP and taking into account more than two objectives are our future
research work.
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